
301116 | Rev.03

Cover
Valid from:

l Firmware version: 01v031
l Server version: 47.10
l Hardware version: 1.0

User manual
myDatalogEASY IoT

Chapter 1 Table of contents

Chapter 1 Table of contents
Cover 1

Chapter 1 Table of contents 3

Chapter 2 Declaration of conformity 15

2.1myDatalogEASY IoT 2G/4GEU 15

2.2myDatalogEASY IoT 2G/3G/4GWorld 16

2.3myDatalogEASY IoT 2G/M1/NB1World 17

Chapter 3 Specifications 19

Chapter 4 General specifications 23

4.1 Translation 23

4.2 Copyright 23

4.3 General descriptive names 23

4.4 Safety instructions 23

4.4.1 Use of the hazard warnings 24

4.4.2 General safety instructions 24

4.4.3 Safety and preventativemeasures for handling GSM/GPRSmodems 25

4.4.3.1 Safety and precautionarymeasures for the GSM/GPRSmodem installation 25

4.4.3.2 Safetymeasures for installing the antenna 25

4.5 Overview 26

4.5.1 Block diagram 27

4.6 Intended use 28

4.7 General product information 28

4.8 Device labelling 30

4.9 Installation of spare and wear parts 31

4.10 Storage of the product 31

4.11Warranty 31

4.12 Disclaimer 32

4.13Obligation of the operator 32

4.14 Personnel requirements 33

Chapter 5 Functional principle 35

5.1 Recommended procedure 37

5.1.1 Development of M2M/IoT application 37

Rev. 03 3

5.2 Functionality of the internal datamemory 38

5.3Memory organisation 39

5.4 Procedure in case of connection aborts 40

5.4.1 Connection abort in "online" mode 41

5.4.2 Connection abort during a Device Logic download 41

5.5 Timeout monitoring in onlinemode 41

5.6 Automatic selection of the GSMnetwork 42

5.7 Determining theGSM/UMTS/LTE signal strength 42

5.8 Determining theGSMposition data 42

5.9 Error handling 42

5.10 Registrationmemory blocks 43

5.10.1 REG_APP_OTP 43

5.11 File transfer 44

5.12Meaning of the SIM state 45

5.13 Using the external SIM slot 46

Chapter 6 Storage, delivery and transport 49

6.1 Inspection of incoming deliveries 49

6.2 Scope of supply 49

6.3 Storage 50

6.4 Transport 50

6.4.1 Transporting power supply units 50

6.5 Return 52

Chapter 7 Installation 53

7.1 Dimensions 53

7.2 Assembling themyDatalogEASY IoT 53

7.3 Inserting/replacing the SIM card 59

7.4 Sealing the pressure compensation 61

7.5 Installing themyDatalogEASY IoT 64

7.5.1Wall mounting 65

7.5.2 Pipemounting 66

7.5.3 Outdoor installation 67

7.5.3.1 Attaching the housing for outdoor installation to a wall 67

7.5.3.2 Attaching the housing for outdoor installation to a pipe 68

4 Rev. 03

Chapter 1 Table of contents

7.6 Safety instructions for cabling 69

7.6.1 Information on preventing electrostatic discharges (ESD) 70

7.7 Electrical installation 70

7.7.1 Connecting the sensors, actuators and power supply 70

7.7.1.1 Connection examples 74

7.7.1.2Mains operation (230VAC) 75

7.7.1.2.1 "Power supply 24V 0,63A for top-hat rail mounting " that can be integrated in the
housing 75

7.7.1.2.2 External power supply unit "Power supply housing " 77

7.7.1.3 RS485 interface extension 79

7.7.1.4 SDI-12 interface extension 80

7.7.1.5 Earthing of sensor cables 81

7.7.2 Connecting themobile network antennas 83

7.7.3 Technical details about the universal inputs 84

7.7.3.1 0/4 to 20mAmode 84

7.7.3.2 0 to 2V mode 84

7.7.3.3 0 to 10V mode 84

7.7.3.4 Standard digital modes (PWM, frequency, digital, counter) 84

7.7.4 Technical details about the PT100/1000 interface 85

7.7.5 Technical details about the RS485 interface 85

7.7.6 Technical details about the RS232 interface 86

7.7.7 Technical details about the USB interface 87

7.7.8 Technical details about the Bluetooth Low Energy interface 87

7.7.9 Technical details about the outputs 88

7.7.9.1 Switchable sensor supply VOUT 88

7.7.9.2 Switchable sensor supply VEXT 89

7.7.9.3 Switchable sensor supply VEXTRS232 90

7.7.9.4 Isolated switch contact (NO, CC) 90

7.7.10 Technical details about energymanagement 90

7.7.11 Technical details about the energy supply 91

7.7.11.1 PSU413D+ AP (300524) 92

7.7.11.2 PSU413D AP (300525) 93

7.7.11.3 PSU713 BP (300526) 93

Rev. 03 5

7.7.11.4 PSU DC (300529) 93

7.7.11.5 PSU DC+ (300798) 94

7.7.12 Technical details about the system time 94

Chapter 8 Initial Start-Up 95

8.1 User information 95

8.2 Applicable documents 95

8.3 General principles 95

8.4 Commissioning the system 95

8.5 Testing communication with the device 97

Chapter 9 User interfaces 99

9.1 User interface on themyDatalogEASY IoT 99

9.1.1 Operating elements 99

9.1.1.1 Solenoid switch 99

9.1.1.2 Three-colour LED 99

9.1.1.3 Lid reed contact 100

9.2 User interface on themyDatanet server 100

9.2.1 Site configuration 100

9.2.1.1 Site 100

9.2.1.2 Comments 101

9.2.1.3 Control 101

9.2.1.4 Configuration 0 - Configuration 9 101

9.2.1.5 Alarm settings 102

9.2.1.6 Basic settings 103

9.2.1.7 FTP export settings 103

9.2.2 Device configuration 104

9.2.2.1 Comments 104

9.2.2.2Measurement instrument 104

9.2.2.3 GPRS 105

Chapter 10 DeviceConfig 107

10.1 General 107

10.2 Prerequisites 107

10.3 Functional principle 108

10.3.1 USB BLE-Adapter 109

6 Rev. 03

Chapter 1 Table of contents

10.4 Installation 110

10.4.1 Installing USB BLE-Adapter driver 112

10.5Menu of the DeviceConfig 113

10.5.1 Settings 113

10.5.1.1 Options 113

10.6 Connecting a Device via USB 114

10.7 Connecting a Device via Bluetooth Low Energy 115

10.8 "GSM" tab 116

10.9 "Log" tab 118

10.10 "Firmware" tab 120

10.11 "Features" tab 121

10.12 "Sync" tab 121

10.12.1 Existing connection to themyDatalogEASY IoT 122

10.12.2 No connection to a device 123

10.13 Recommended procedure 124

10.13.1 Synchronisation with themyDatanet server 124

10.13.1.1 Internet connection available when reading out the data 124

10.13.1.2 No Internet connection when reading out the data 128

Chapter 11 "tbd" smartphone app 133

11.1 General 133

Chapter 12 myDatanet server 135

12.1 Overview 135

12.1.1 Explanation of the symbols 135

12.2 "Customer" area 136

12.3 "Sites / Applications" area at customer level 138

12.3.1 Reports 139

12.3.2Map view 139

12.4 Recommended procedure 139

12.4.1 Creating the site 139

Chapter 13 rapidM2M Studio 143

13.1 General 143

13.2 Prerequisites 144

13.3 Project dashboard 145

Rev. 03 7

13.4 CODEbed 146

13.5 TESTbed 147

Chapter 14 Device Logic 149

14.1 General 149

14.1.1 Direct entry of a device logic 149

14.1.2 Uploading a binary file 149

14.1.3 Using the CODEbed of the web-based development environment rapidM2MStudio 149

14.2 Device API 150

14.2.1 Constants 150

14.2.2 Timer, date & time 151

14.2.2.1 Arrayswith symbolic indices 151

14.2.2.2 Constants 151

14.2.2.3 Functions 151

14.2.3 Uplink 156

14.2.3.1 Arrayswith symbolic indices 156

14.2.3.2 Constants 157

14.2.3.3 Callback functions 161

14.2.3.4 Functions 162

14.2.4 System 172

14.2.4.1 Arrayswith symbolic indices 172

14.2.4.2 Constants 172

14.2.4.3 Functions 173

14.2.5 Encoding 175

14.2.5.1 Constants 175

14.2.5.2 Functions 176

14.2.6 RS232, RS485 181

14.2.6.1 Constants 181

14.2.6.2 Callback functions 181

14.2.6.3 Functions 182

14.2.7 Bluetooth Low Energy 189

14.2.7.1 Arrayswith symbolic indices 189

14.2.7.2 Constants 191

14.2.7.3 Callback functions 194

8 Rev. 03

Chapter 1 Table of contents

14.2.7.4 Functions 196

14.2.8 Registry 203

14.2.8.1 Constants 203

14.2.8.2 Callback functions 204

14.2.8.3 Functions 204

14.2.9 Position 208

14.2.9.1 Arrayswith symbolic indices 208

14.2.9.2 Constants 210

14.2.9.3 Functions 211

14.2.10Math 217

14.2.11 Char & String 220

14.2.12 CRC & hash 228

14.2.12.1 Arrayswith symbolic indices 228

14.2.12.2 Functions 228

14.2.13 Various 229

14.2.13.1 Arrayswith symbolic indices 229

14.2.13.2 Constants 230

14.2.13.3 Functions 230

14.2.14 Console 236

14.2.15 SMS 238

14.2.15.1 Callback functions 238

14.2.15.2 Functions 238

14.2.16 External SIM 239

14.2.16.1 Arrayswith symbolic indices 239

14.2.16.2 Functions 239

14.2.17 File transfer 240

14.2.17.1 Arrayswith symbolic indices 240

14.2.17.2 Constants 240

14.2.17.3 Callback functions 240

14.2.17.4 Functions 242

14.2.18 Universal inputs 247

14.2.18.1 Constants 247

14.2.18.2 Functions 248

Rev. 03 9

14.2.19Outputs 251

14.2.19.1 Constants 251

14.2.19.2 Functions 251

14.2.20 LED 256

14.2.20.1 Constants 256

14.2.20.2 Functions 257

14.2.21 Solenoid switch 259

14.2.21.1 Constants 259

14.2.21.2 Callback Funktionen 259

14.2.21.3 Functions 260

14.2.22 Power management 261

14.2.22.1 Arrayswith symbolic indices 261

14.2.22.2 Constants 262

14.2.22.3 Callback functions 262

14.2.22.4 Functions 263

14.3 Device Logic error codes 264

14.4 Syntax 268

14.4.1 General syntax 268

14.4.1.1 Format 268

14.4.1.2 Optional semicolons 268

14.4.1.3 Comments 268

14.4.1.4 Identifier 268

14.4.1.5 Reserved keywords 268

14.4.1.6 Numerical constants 269

14.4.1.6.1 Numerical integer constants 269

14.4.1.6.2 Numerical floating-point constants 269

14.4.2 Variables 269

14.4.2.1 Declaration 269

14.4.2.2 Local declaration 269

14.4.2.3 Global declaration 269

14.4.2.4 Static local declaration 270

14.4.2.5 Static global declaration 270

14.4.2.6 Floating point values 270

10 Rev. 03

Chapter 1 Table of contents

14.4.3 Constant variables 270

14.4.4 Array variables 270

14.4.4.1 One-dimensional arrays 270

14.4.4.2 Initialisation 271

14.4.4.3 Progressive initialisation for arrays 271

14.4.4.4Multi-dimensional arrays 271

14.4.4.5 Arrays and the "sizeof" operator 272

14.4.5 Operators and expressions 273

14.4.5.1 Notational conventions 273

14.4.5.2 Expressions 273

14.4.5.3 Arithmetic 273

14.4.5.4 Bit manipulation 274

14.4.5.5 Assignment 274

14.4.5.6 Comparative operators 275

14.4.5.7 Boolean 275

14.4.5.8 Other 276

14.4.5.9 Priority of the operators 276

14.4.6 Statements 277

14.4.6.1 Statement label 277

14.4.6.2 Composite statements 278

14.4.6.3 Expression statement 278

14.4.6.4 Empty statement 278

14.4.6.5 Assert expression 278

14.4.6.6 Break 279

14.4.6.7 Continue 279

14.4.6.8 Do statement while (expression) 280

14.4.6.9 Exit expression 280

14.4.6.10 For (expression 1; expression 2; expression 3) statement 280

14.4.6.11Goto label 281

14.4.6.12 If (expression) statement 1 else statement 2 281

14.4.6.13 Return expression 281

14.4.6.14 switch (expression) {case list} 281

14.4.6.15While (expression) statement 282

Rev. 03 11

14.4.7 Functions 283

14.4.7.1 Function arguments ("call-by-value" versus "call-by-reference") 283

14.4.7.2 Named parameters versus fixed parameters 285

14.4.7.3 Standard values of function arguments 285

14.5 Differences to C 286

Chapter 15 Data Descriptor 289

15.1 Data structure 289

15.1.1 Division of a structuredmeasurement data channel into individual data fields 290

15.1.2 Division of a configurationmemory block into individual data fields 291

15.1.3 Division of the aloha data into individual data fields 292

15.1.4 Attributes of the field definition 292

15.2 Example 297

15.3 Special values of the data types 299

Chapter 16 API 301

16.1 Backend API 301

16.2 rapidM2MPlayground 301

16.2.1 Overview 302

Chapter 17 Maintenance 303

17.1 General maintenance 303

17.2 Replacing the power supply unit 303

17.2.1 Charging the power supply unit 305

17.3 Power supply units with integrated energy store 307

Chapter 18 Removal/disposal 309

Chapter 19 Troubleshooting and repair 311

19.1 General problems 311

19.2 Log entries and error codes 313

19.2.1Modem error 318

19.3 Evaluating the device log 320

19.3.1 Evaluating the device log on themyDatanet server 320

19.3.2 Evaluating the device log using DeviceConfig 320

Chapter 20 Spare parts and accessories 321

20.1 Order options 321

20.2 Chargeable features 321

12 Rev. 03

Chapter 1 Table of contents

20.3 Compatible IoT apps 321

20.4 Assembly sets 322

20.5 Antennas 322

20.6 Power supply units 322

20.7 Solar panel 322

20.8 Charging devices and power supply units 323

20.9 BLE sensors 323

20.10 BLE output modules 323

20.11Other accessories 323

Chapter 21 Document history 325

Chapter 22 Glossary 333

Chapter 23 Contact information 335

Rev. 03 13

Chapter 2 Declaration of conformity

Chapter 2 Declaration of conformity

2.1 myDatalogEASY IoT 2G/4G EU

Rev. 03 15

2.2 myDatalogEASY IoT 2G/3G/4G World

16 Rev. 03

Chapter 2 Declaration of conformity

2.3 myDatalogEASY IoT 2G/M1/NB1 World

Rev. 03 17

Chapter 3 Specifications

Chapter 3 Specifications
Voltage supply Rechargeable battery:

l PSU413D+ AP : 13,6Ah, Li-Ion , integrated 2kV overvoltage protection
l PSU413D AP : 13,2Ah, Li-Ion , integrated 2kV overvoltage protection

Battery:
l PSU713 BP : 13Ah

Direct power supply:
l PSU DC : 2kV overvoltage protection and reverse voltage protection
l PSU DC+ : 900mAh, Li-Po , 2kV overvoltage protection and reverse voltage
protection

Additional information is provided in "Technical details about the energy supply" on page
91.

Supply or
charging
voltage

12...32VDC (max. 12W)

Housing Material:
Weight:
Degree of protection:

Dimensions (WHD):

ABS / PC (housing/cover)
400g (without power supply unit)
IP66 / IP68 (IP68: immersion depthmax.1m for min. 105
days)
130 x 250 x 78mm (without antenna)

Operating
temperature

-20...+60°C

Air humidity 15...90%rH non-condensing

Storage
temperature

-30...+85°C

Display Three-colour LED with selectable function:
l Signalling the operating state (controlled by the FW)
l Function freely useable (controlled by the device logic)

Operation Solenoid switch with selectable function:
l Initiation of the transmission (evaluated by the FW)
l Function freely useable (evaluated by the device logic)

Lid reed contact:
l Function freely useable (evaluated by the device logic)

Antenna
connector 1)

up to 3 x FME-M

Rev. 03 19

Universal
inputs 2)

4 x analogue or digital
Modes:

l 0/4...20mA: Resolution 6,3µA, max. 23,96mA, load 96Ω
l 0...2V: Resolution 610µV, max. 2,5V, load 10k086
l 0...10V: Resolution 7,97mV, max. 32V, load 4k7
l PWM: 1...99%, max. 100Hz, min. pulse length 1ms, load 10k086
l Frequency: 1...1000Hz, 10k086
l Digital: max. 32V, low <0,99V, high >2,31V, load 10k086
l Counter: min. pulse length 1ms, load 10k086

Additional information is provided in "Technical details about the universal inputs" on page
84.

System time Hardware real-time clockwith its own buffer battery (service life >10 years) and automatic
time synchronisation with the server

Additional information is provided in "Technical details about the system time" on page 94.

Internal sensors Internal housing temperature
l Measurement range: -20...+60°C
l Resolution: 0,1°C

Humidity in the housing
l Measurement range: 0...100% rH
l Resolution: 0,1% rH

External
temperature
sensor 3)

1 x PT100/1000 (including auto detection)

Additional information is provided in "Technical details about the PT100/1000 interface" on
page 85.

Serial interface 1 xRS232 (4-wire) 4)
l Baud rate: 600-115200
l Stop bits: 1, 2
l Parity: N, E, O
l Data bits: 7, 8
l Flow control: Off, RTS/CTS

1 xRS485 (2-wire) 5) 6)
l Baud rate: 600-115200
l Stop bits: 1, 2
l Parity: N, E, O
l Data bits: 7, 8
l Load resistance: Off, 120Ω

Additional information is provided in "Technical details about the RS485 interface" on page
85 and "Technical details about the RS232 interface" on page 86.

20 Rev. 03

Chapter 3 Specifications

Outputs 2 x switchable 3,3V supply (max. 180mA)

1 x switchable and adjustable sensor supply
The device logic can be used to vary the output voltage in the range of 5...24V .

l 5Vnominal: 4,75V at Iout = 50mA
l 12Vnominal: 11,7V at Iout = 50mA
l 15Vnominal: 14,7V at Iout = 50mA
l 24Vnominal: 23,4V at Iout = 50mA

1x isolated switch contact:
l Imax: 130mA
l Umax: 32V
l Ron: 35Ω
l fmax: 1000Hz

Modes:
l Digital
l Frequency: Adjustment range 1...1000Hz, pulse duty factor 1...100%
l PWM: Adjustment range 0...100%, frequency 0...1000Hz
l Pulse: Pulse duration 1...500ms , pulse pause 1...500ms
l Pulse/min

Additional information is provided in "Technical details about the outputs" on page 88.

Bluetooth 7) 5.0 compatible low energymodule

USB interface 1 xmini-B USB 2.0 slave for the connection to a PC. The DeviceConfig configuration
programmust be installed on the PC or the web-based development environment
rapidM2MStudiomust be used to enable communication with themyDatalogEASY IoT .

Additional information is provided in "Technical details about the USB interface" on page
87.

Datamemory 3MB internal flashmemory.
The size of the data records is variable (max. 1023 Byte) and is determined by the device
logic created by the user. The system-related overhead is 11 Byte per data record.

Additional information is provided in"Functionality of the internal datamemory" on page 38.

Configuration
memory

10 independent blocks each with 4000 Bytes

Registration
memory

Flash: 4 blocks each with 1kB and pre-defined purposes for storing device-specific data

RAM: 1 optional blockwith max. 1kB for storing application-specific data

Additional information is provided in "Registrationmemory blocks" on page 43.

Rev. 03 21

Memory for the
binary

256kB (uncompressed size)

Additional information is provided in "Memory organisation" on page 39.

Data
transmission

Bluetooth Low Energy: 7)
Range: 20m (depending on the environmental conditions)

2G/4GEurope (myDatalogEASY IoT 2G/4GEU)
l 2GGPRS 900MHz / 1800MHz
l LTE CAT1 B3, B7, B20

2G/3G/4Gworld (myDatalogEASY IoT 2G/3G/4GWorld)
l 2GGPRS 900MHz / 1800MHz
l 2GGPRS 850MHz / 1900MHz
l UMTS B1, B2, B5, B8
l LTE FDD B1, B2, B3, B4, B5, B7, B8, B12, B13, B18, B19, B20, B26, B28
l LTE TDD B38, B39, B40, B41

2G/M1/NB1world (myDatalogEASY IoT 2G/M1/NB1World)
l 2GGPRS 900MHz / 1800MHz
l 2GGPRS 850MHz / 1900MHz
l LTE B1, B2, B3, B4, B5, B8, B12, B13, B20, B25, B26, B28, B66, B85

SIM 8) The following options can be selected using the DeviceConfig configuration program:
l Integrated SIM chip
l SIM slot

Additional information is provided in "Using the external SIM slot" on page 46

1) The number and assignment of the antenna connectors depends on the selected variant of the myDatalogEASY IoT
and any additional modules that may be installed (e.g. GNSS receiver).
2) The universal inputs 3 and 4 are only available if the RS485 interface is not used.
3) In order for the external temperature sensor to be used, the chargeable feature "Activation code temperature
input(300542)" must be unlocked or order option "Feature activation temperature input (300732)" is required.
4) In order for the RS232 interface to be used, the chargeable feature "Activation code RS232 (300541)" must be unlocked
or order option "Feature activation RS232 (300731)" is required.
5) In order for the RS485 interface to be used, the chargeable feature "Activation code RS485 (300540)" must be unlocked
or order option "Feature activation RS485 (300730)" is required.
6) The RS485 interface is only available if the universal inputs 3 and 4 are not being used.
7) In order for the Bluetooth module to be used, the chargeable feature "Activation code BLE (300968)" must be unlocked
or order option "Feature activationg BLE (300972)" is required.
8) In order for the SIM slot to be used, the chargeable feature "Activation code VPN SIM (300539)" must be unlocked or
order option "Feature activation VPN SIM (300729)" is required.

22 Rev. 03

Chapter 4 General specifications

Chapter 4 General specifications
The information in thismanual has been compiled with great care and to the best of our knowledge. The
manufacturer, however, assumes no liability for any incorrect specifications that may be provided in this
manual. Themanufacturer is not responsible for direct, indirect, accidental or consequential damageswhich
arise from errors or omissions in thismanual even if advised of the possibility of such damages. In the interest
of continuous product development, themanufacturer reserves the right to make improvements to this
manual and the products described in it at any time and without prior notification or obligation.

Note: The specifications in this manual are valid as of the versions listed on the front page. Revised versions
of this manual, as well as software and driver updates are available in the service area of themyDatanet
server.

4.1 Translation
For deliveries to countries in the European Economic Area, themanual must be translated into the language
of the respective country. If there are any discrepancies in the translated text, the original manual (German)
must be referenced or themanufacturer contacted for clarification.

4.2 Copyright
The copying and distribution of this document aswell as the utilisation and communication of its contents to
others without express authorisation is prohibited. Contraventions are liable to compensation. All rights
reserved.

4.3 General descriptive names
The use of general descriptive names, trade names, trademarks and the like in thismanual does not entitle
the reader to assume theymay be used freely by everyone. They are often protected registered trademarks
even if not marked as such.

4.4 Safety instructions
For the connection, commissioning and operation of themyDatalogEASY IoT , the following information and
higher legal regulations of the country (e.g. ÖVE), such as valid EX regulations aswell as the applicable
safety and accident prevention regulations for the respective application casemust be observed.

Read thismanual completely before unpacking, setting up or operating this device. Observe all hazard,
danger and warning information. Non-observance can lead to serious injuries to the operator and/or damage
to the device.

Ensure that the safety equipment of thismeasurement instrument is not impaired. Install and use the
measurement system only in themanner andmethod described in thismanual.

Rev. 03 23

Important note: Themanufacturer's products that are designed for outdoor use include extensive
protection against moisture and dust penetration. If these products are connected to the power supply
or sensors by cables with connectors rather than permanently installed cables, the susceptibility of the
connector and socket to moisture and dust penetration is significantly higher. The operator is
responsible for protecting the connector and socket against penetratingmoisture and dust in a
suitable way and complying with local safety regulations.

4.4.1 Use of the hazard warnings
DANGER:
Indicates a potential or threatening hazardous situation that will result in death or serious
injuries if not avoided.

WARNING:
Indicates a potential or threatening hazardous situation that can result in death or serious
injuries if not avoided.

CAUTION:
Indicates a potential hazardous situation that can result in minor or moderate injuries or
damage to this instrument.

Important note: Indicates a situation that can result in damages to this instrument if it is not avoided.
Information that must be particularly emphasised.

Note: Indicates a situation that does not result in any injury to persons.

Note: Information that supplements the specifications in themain text.

4.4.2 General safety instructions
WARNING:
Hazardous electric voltage can cause electric shock or burns. Always switch off all of the
used power supplies for the device before installing it, completing any maintenance work
or resolving any faults.

WARNING:
Ensure that the device is fully deactivated and cannot activate automatically when
sending/returning it as air freight. Information on this is provided in chapter "Storage of
the product" on page 31. If you have any unanswered questions, contact the manufacturer
(see "Contact information" on page 335).

WARNING:
Never use this device in areas where the use of wireless equipment is prohibited. The
device must not be used in hospitals and/or in the vicinity of medical equipment, such as
heart pacemakers or hearing aids, as their functionality could be compromised by the
GSM/GPRS modem contained in the device.

WARNING:
Never use this device in potentially explosive atmospheres and in the vicinity of highly
combustible areas (fuel stations, storage areas for combustible material, chemical plants
and detonation sites) or in the vicinity of flammable gases, vapours or dust.

24 Rev. 03

Chapter 4 General specifications

4.4.3 Safety and preventative measures for handling GSM/GPRS modems
The following safety and preventativemeasuresmust be observed during all phases of installation, operation,
maintenance or repair of a GSM/GPRSmodem. Themanufacturer is not liable if the customer disregards
these preventativemeasures.

CAUTION:
The GSM/GPRS modem connection must not be used in hazardous environments.

No guarantee of any kind, whether implicit or explicit, is given by themanufacturer and its suppliers for the use
with high risk activities.

In addition to the following safety considerations, all directives of the country in which the device is installed
must be complied with.

Important note: No liability shall be assumed at any time and under no circumstances for
connections via a GSM/GPRSmodem for which wireless signals and networks are utilized. The
GSM/GPRSmodemmust be switched on and operated in an area where sufficient signal strength is
present.

4.4.3.1 Safety and precautionary measures for the GSM/GPRS modem installation

l This devicemust only be installed by a trained technician who applies the recognised installation
practices for a radio frequency transmitter including the correct grounding of external antennas.

l The devicemust not be operated in hospitals and/or in the vicinity of medical equipment such as heart
pacemakers or hearing aids.

l The devicemust not be operated in highly flammable areas such as petrol filling stations, fuel storage
sites, chemical factories and explosion sites.

l The devicemust not be operated in the vicinity of flammable gases, vapours or dusts.
l The devicemust not be subjected to strong vibrations or impacts.
l TheGSM/GPRSmodem can cause interferences if it is located in the vicinity of television sets, radios
or computers.

l Do not open theGSM/GPRSmodem. Anymodification to the device is prohibited and will result in the
operating licence being revoked.

l The use of GSM services (SMSmessages/data communication/GPRS, etc.) may incur additional
costs. The user is solely responsible for any resulting damages and costs.

l Do not install the device in any other way to the one described in the operating instructions. Improper
use will invalidate the warranty.

4.4.3.2 Safety measures for installing the antenna

l Only use antennas that are recommended or supplied by themanufacturer.
l The antennamust be installed at a distance of at least 20 cm from individuals.
l The antennamust not be extended outside protected buildings andmust be protected against lightning
strikes.

l The voltage supplymust be switched off before replacing the antenna.

Rev. 03 25

4.5 Overview
Note: As themyDatalogEASY IoT is split into several components when delivered, it must be
assembled before use (see "Assembling themyDatalogEASY IoT " on page 53).

Front of the myDatalogEASY IoT
(view of a device after assembly)

Rear of the myDatalogEASY IoT
(view of a device after assembly)

1 Antenna connectors (up to 3 x FME-M) 3 Cable screw connection (cable diameter of 5-
10 mm)

2 Housing cover 4 Pressure compensation

26 Rev. 03

Chapter 4 General specifications

4.5.1 Block diagram

Block diagram of the myDatalogEASY IoT

1) It is a DC/DC converter with controllable output current. A power supply unit (e.g. PSU413D+ AP) that is equipped with a
rechargeable battery can thus be charged via the VBattin-/output..

Rev. 03 27

Note: Detailed block diagrams of themost common power supply units are provided in
chapter "Technical details about the energy supply" on page 91.

4.6 Intended use
The portable, freely programmablemeasurement instrument is designed for determining, processing and
transferringmeasurement data acquired via various industrial interfaces or a Bluetooth connection (Bluetooth
Low Energy). The device can operate without mains power. Themeasured and recorded data is stored on a
non-volatile memorymedium. The saved data can be sent to a central server via themobile network for
further processing or transferred to a PC via a Bluetooth connection (Bluetooth Low Energy). Using the
software provided by themanufacturer, the data can then be transferred from the PC to a central server. The
device is equipped with an integrated SIM chip for establishing amobile connection. Themaximum
permissible limit values specified in chapter "Specifications" on page 19must be observed. Themanufacturer
shall not be liable for any operational cases that deviate from these limit values and have not been approved
by themanufacturer in writing.

Note: This device is exclusively intended to be used for the purposes as described before. Any other
use or use beyond what is specified or amodification of the device shall be deemed to be not for the
intended purpose and is not permitted without the expresswritten consent of themanufacturer. The
manufacturer shall not be held liable for any damages that may result from such unauthorised use or
modification. The operator alone bears the associated risk.

Note: Themanufacturer is not liable for data loss of any kind.

Note: The integrated SIM chip provides amobile communications connection to a variety of
international service providers. In order to be able to utilise all functions of the device, youmust
ensure that the device is located in the service area of one of these service providers. You can find a
list of all supported countries and associated service providers under
www.microtronics.com/footprint. A Managed Service contract with Microtronics Engineering GmbH
is required for use of themobile data transmission (see www.microtronics.com/managedservice).
This includes the provisioning of themobile communications connection via the network of the service
provider included in the above-mentioned list.

4.7 General product information
The device is a compact, freely programmable device for determining, processing and transferring
measurement data.

The following interfaces are available for recordingmeasurement data:

l 4 universal inputs that can be operated in various analogue and digital modes. 1)
l An interface for connecting a PT100 or PT1000 including automatic detection of which type is being
used 2)

l OneRS232 interface 3)
l OneRS485 interface 1) 4)
l One Bluetooth interface (5.0 compatible Low Energymodule) 5)

ThemyDatalogEASY IoT is also equipped with internal sensors (internal housing temperature and air
humidity in the housing), 3 switchable voltage outputs to supply the sensors and an isolated switch contact to
directly control an actuator. For one of the switchable sensor supplies the device logic can be used to vary the
output voltage (see "Vsens_On()") in the range of 5...24V . The output voltage for the other 2 switchable

28 Rev. 03

Chapter 4 General specifications

sensor supplies is 3,3V and cannot be changed. The isolated switch contact can be operated in different
modes (digital, frequency, PWM, pulse, pulse/min.).

The customer can create their own application via the rapidM2MStudio (see "rapidM2MStudio " on page
143). During development the part of the application that needs to be installed on the device (i.e. the device
logic) is loaded into themyDatalogEASY IoT via the USB interface. For applications that are provided via the
rapidM2MStore installation of the device logic is performed via themobile network or Bluetoothconnection in
the course of connecting the site with themyDatalogEASY IoT . The device logic enables access to the serial
interfaces (RS232 3) and RS485 4))and the Bluetooth interface (Bluetooth Low Energy)5), thus providing the
customer with the option to connect to almost all of the devices and sensors that are compatible with these
interfaces and to implement the corresponding communication protocols.

ThemyDatalogEASY IoT provides the customer with amemory area for their data (3MB) aswell as 10
independent memory blocks each with 4000 Bytes for the configuration data. In addition to the 4 registration
memory blocks each with 1kB , that are saved in the flash, themyDatalogEASY IoT has another one that can
optionally be initialised via the "rM2M_RegInit()" function and that is saved in the RAM. Its size can be
specified during initialisation, although it is limited to amaximumof 1kB . The registrationmemory blocks are
assigned to predefined purposes and are designed for storing device-specific data (see "Registration
memory blocks" on page 43).

Recordedmeasurement data can be sent to a central myDatanet server via themobile radio network for
further processing or read out locally via the Bluetooth connection (Bluetooth Low Energy). The
DeviceConfig configuration program provided by themanufacturer (see "DeviceConfig " on page 107) and
the USB BLE-Adapter (300685) or a smartphone compatible with Bluetooth Low Energy and the "tbd"
smartphone app are required for reading via a Bluetooth connection. In both cases activation of the
chargeable feature "Activation code BLE (300968)" or the order option "Feature activationg BLE (300972)" is
required. Both the DeviceConfig configuration program and the "tbd" smartphone app offer the possibility to
forward themeasurement data to a central myDatanet server. The device is equipped with an integrated SIM
chip for establishing amobile connection.

Synchronisation of the configuration and registration data with the server, is also possible via themobile
network or the Bluetooth connection (Bluetooth Low Energy). The customer holds the responsibility for
initialising the connection to the central myDatanet server via themobile network connection (see "rM2M_
TxStart()"). However, the system automatically synchronises the configuration, registration and
measurement data with the server.
1) The universal inputs 3 and 4 are only available if the RS485 interface is not used.
2) In order for the external temperature sensor to be used, the chargeable feature "Activation code temperature
input(300542)" must be unlocked or order option "Feature activation temperature input (300732)" is required.
3) In order for the RS232 interface to be used, the chargeable feature "Activation code RS232 (300541)" must be unlocked
or order option "Feature activation RS232 (300731)" is required.
4) In order for the RS485 interface to be used, the chargeable feature "Activation code RS485 (300540)" must be unlocked
or order option "Feature activation RS485 (300730)" is required.
5) In order to use the Bluetooth interface, the chargeable feature "Activation code BLE (300968)" must be unlocked or the
order option "Feature activationg BLE (300972)" is required.

Rev. 03 29

4.8 Device labelling
The specifications in this user manual apply exclusively to themyDatalogEASY IoT device type. The type
plate is located on the right side of the device and contains the following specifications:

l Type designation
l Serial number
l Item number
l Country list profile of the SIM chip
l Hardware revision
l Environmental conditions during operation
l Protection class
l Week and year of production
l CEmarking
l Logo for the EUWEEE Directive
l Chargeable features that were unlocked at the time of delivery
l Name and address of themanufacturer

The correct specification of the type designation and serial number is important for all queries and spare part
orders. Only then can we process requests promptly and properly.

Type plate myDatalogEASY IoT

Note: This symbol indicates the country list profile (see www.microtronics.com/footprint) of the SIM chip
installed in the device.

Note: These operating instructions are part of the device andmust be available to the user at all
times. The safety instructions contained thereinmust be observed.

WARNING:
It is strictly prohibited to disable the safety equipment or modify its mode of operation.

30 Rev. 03

Chapter 4 General specifications

4.9 Installation of spare and wear parts
Be advised that spare and accessory parts that have not been supplied by themanufacturer have also not
been inspected or approved by themanufacturer. The installation and/or use of such products can possibly
have a negative impact on the specified constructional properties of the device. Themanufacturer shall not be
liable for any damages that arise from the use of non-original parts and non-original accessory parts.

4.10 Storage of the product
For safekeeping of themyDatalogEASY IoT , ensure that all relevant data was transferred to themyDatanet
server. If necessary, initiate a transmission directly on the device using the solenoid contact (see "Solenoid
switch" on page 99), if you have included this in your Device Logic, and then check again to see whether all of
the relevant data has now been transferred. If your device does not include the option to initiate the
transmission of temporarily storedmeasurement data, youmay have to wait until the next scheduled data
transmission for all of the data to be sent to themyDatanet server. This particularly applies to the "interval"
connection type (see "rM2M_TxSetMode()"). If the "Interval & wakeup" connection type has been selected,
you can initiate the transmission via themyDatanet server. Then check again tomake sure all of the relevant
data has been transferred.With the "Online" connection type, the determinedmeasurement data is
immediately transferred to themyDatanet server. The data on the server is always up-to-date and the device
can be switched off at any time. Remove the power supply unit before disconnecting the cables and antenna.
If possible, switch off the supply or charging voltage before disconnecting the cables from the V IN andGND
clamps (see "Connecting the sensors, actuators and power supply" on page 70). Store the
myDatalogEASY IoT and power supply unit in the original packaging.

The configuration andmost recently determined data are retained. The system time also continues to run
thanks to the hardware real-time clock equipped with its own buffer battery. Thismeans that a valid time basis
is available immediately following recommissioning (see "Technical details about the system time" on page
94).

4.11 Warranty
The device has been functionally tested before delivery. If it is used as intended (see "Intended use" on page
28) and the operating instructions, the applicable documents(see "Applicable documents " on page 95) and
the safety notes and instructions contained therein, are observed, no functional restrictions are to be
expected and perfect operation should be possible.

Note: Please also note in this regard the next chapter "Disclaimer" on page 32.

Note: Limitation of warranty

In the event of non-compliance with the safety instructions and instructions in this document, the
manufacturer reserves the right to limit the warranty.

Rev. 03 31

4.12 Disclaimer
Themanufacturer assumes no liability

l for damages owing to a change of this document. Themanufacturer reserves the right to change the
contents of this document and this disclaimer at any time and without any notice.

l for damages to persons or objects resulting from failure to complywith applicable regulations. For
connection, commissioning and operation of the devices/sensors all available information and higher
local legal regulations (e.g. in Austria ÖVE guidelines) such as applicable Ex regulations aswell as
safety requirements and regulations in order to avoid accidents shall be adhered to.

l for damages to persons or objects resulting from improper use. For safety and warranty reasons, all
internal work on the instruments beyond from that involved in normal installation and connection, must
be carried out only by qualifiedMicrotronics personnel or persons or companies authorised by
Microtronics .

l for damages to persons or objects resulting from the use of instruments in technically imperfect
condition.

l for damages to persons or objects resulting from the use of instrumentsnot in accordance with the
requirements.

l for damages to persons or objects resulting from failure to complywith safety information
contained within this instructionmanual.

l for missing or incorrect measurement values or resulting consequential damages due to improper
installation.

4.13 Obligation of the operator
WARNING:
In the EEA (European Economic Area), the national implementation of the framework
directive (89/391/EEC) as well as the associated specific directives and from these in
particular, the directive (2009/104/EC) about the minimum safety and health requirements
for use of work equipment by workers at work, each in their respective version are to be
complied with.

The operator must obtain the local operating licence and the associated documents.

In addition, the operator must comply with the local legal requirements for

l the safety of the personnel (accident preventionmeasures),
l the safety of the equipment (protective equipment andmaintenance),
l the product disposal (waste disposal law),
l thematerial disposal (waste disposal law),
l the cleaning (cleaning agents and disposal) and
l the environmental protection amendments.

Before commissioning, the operator must ensure that the installation and commissioning – provided these
were performed by the operator himself – are in compliance with the local regulations.

32 Rev. 03

Chapter 4 General specifications

4.14 Personnel requirements
Installation, commissioning andmaintenancemay only be completed by personnel whomeet the following
conditions:

l Qualified specialist personnel with the relevant training
l Authorised by the facility operator

Note: Qualified personnel

In the context of these instructions and the warnings on the product itself, individuals responsible for the setup,
installation, commissioning and operation of the product must have gained relevant qualifications relating to
their activities, including, for example:

l Training, instruction and authorisation to activate/deactivate, ground and label electric circuits and
devices/systems in accordance with the standards of safety engineering.

l Training or instruction on themaintenance and use of suitable safety equipment in accordance with the
standards of safety engineering.

l First aid training

Rev. 03 33

Chapter 5 Functional principle

Chapter 5 Functional principle
In the graphic below, all of the components that are part of themyDatanet are illustrated in grey. All other
componentsmust be provided/created by the customer.

Functional principle

1 PC with the DeviceConfig configuration program installed

2 Client that accesses the interface of themyDatanet server via the web browser

3 USB BLE-Adapter (Bluetooth Low Energy to USB converter)

4 myDatalogEASY IoT with integratedmanaged service SIM chip (including data transmission)

5 Application created by the customer (device logic) that collects and records the data (see "Device Logic"
on page 149)

6 myDatanet server to which the data is transferred

7 Data Descriptor defined by the customer that enables the use of themeasurement data and
configurations generated by the application (device logic) in connection with the interface of the
myDatanet server (see "Data Descriptor " on page 289)

8 Customer-specific server that provides clients with their own interface. The customer-specific server
obtains the data via the API interface of themyDatanet server (see "API" on page 301).

9 Smartphone with "tbd" smartphone app installed

10 Client, on which a PC program is running, that obtains its data via the API interface of themyDatanet
server (see "API" on page 301)

11 Client that uses a web browser to access the interface of the customer-specific server, which receives its
data bymeans of the API interface of themyDatanet server.

Rev. 03 35

As illustrated in the previous figure (see "Functional principle" on page 35), there are 3 options for transferring
the data from themyDatalogEASY IoT to themyDatanet server:

l Directly via 2G/3G/4G/M1/NB1mobile connection
l Indirectly, by initially reading the data from the device via the DeviceConfig configuration program using
the Bluetooth connection (BLE) and then using the PC’s Internet connection to transfer the data to the
server 1)

l Indirectly, by reading the data from the device via the "tbd" smartphone app using the Bluetooth
connection (BLE) and using the smartphone’s Internet connection to transfer the data to the
myDatanet server 1)

1) To read the data from the device via Bluetooth connection (BLE), the chargeable feature "Activation code BLE (300968)"
or the order option "Feature activationg BLE (300972)" is required.

Functions and components provided bymyDatanet :

l myDatalogEASY IoT

Programmable (see "Device Logic" on page 149), portable device with integratedmemory and
standardised industrial interfaces (UI1-4, PT100/1000, RS232, RS485, isolated switch contact) as well
as a Bluetooth interface (Bluetooth Low Energy) to connect sensors and actuators to themyDatanet
server (2G/3G/4G/M1/NB1).

l USB BLE-Adapter (300685, optional accessories)

This hardwaremodule is connected directly to the USB interface of the PC. The required drivers are
included in the installation package of the DeviceConfig configuration program. Detailed information
on this is provided in chapter "Installing USB BLE-Adapter driver" on page 112.

l DeviceConfig configuration program (optional)

The DeviceConfig configuration program is required to read out the data from themyDatalogEASY IoT
via the Bluetooth connection (Bluetooth Low Energy) and to forward it to a central myDatanet server.
An Internet connection is required for this purpose. The DeviceConfig configuration program uses
port 51241 to transfer data.

l "tbd" smartphone app (optional)

When combined with a Bluetooth Low Energy compatible smartphone, the "tbd" smartphone app
provides the option of reading the data from themyDatalogEASY IoT via the Bluetooth connection
(Bluetooth Low Energy) and transferring it to a central myDatanet server.

l Managed Service

Managed Service is the basis for operating the devices and provides a wide range of services.
Managed Service includes updates for device firmware, mobile data transmission on a global scale and
free support - providing you with one contact person for the entire solution.

l myDatanet server

Database for saving themeasurement data and configurations. Data is either accessed via the API of
the server (see "API" on page 301) or web interface of the server.

36 Rev. 03

Chapter 5 Functional principle

Functions and components provided by the customer

l Sensor and actuators

Sensors and actuators that have interfaces that are compatible with the specifications listed in the
chapter "Specifications" (see "Specifications" on page 19)

l Application (device logic)

The firmware of themyDatalogEASY IoT onlymanages the synchronisation of themeasurement data
and configurations between themyDatalogEASY IoT andmyDatanet server. The application created
by the customer must record themeasurement values and create the data blocks that are to be saved.
The data blocks, on the other hand, are stored by the firmware of themyDatalogEASY IoT (see
"rM2M_RecData()"). The time of the synchronisation and the type of connectionmust also be
determined by the application created by the customer. Both of the API functions "rM2M_TxStart()"
and "rM2M_TxSetMode()" are provided for this purpose.

l Data Descriptor

The basic function of themyDatanet server is limited to the synchronisation of themeasurement data
channels ("histdata0" - "histdata9") and configuration blocks ("config0" - "config9") between the
myDatalogEASY IoT and server. The Data Descriptor defined by the customer must separate the
measurement data channels and configuration blocks to the individual data fields. An explanation of
this is provided in chapter "Data structure" on page 289.

l Customer-specific server with web interface for the clients (optional).

It can be used to create an individual web interface for the clients. In this case the data is read from the
customer specific server via the API interface (see "API" on page 301) on themyDatanet server
gelesen.

5.1 Recommended procedure

5.1.1 Development of M2M/IoT application
It is recommended to start with the definition of the Data Descriptor (see "Data Descriptor " on page 289)
when developing aM2M/IoT application. It specifies the various data structures (measurement data,
configurations, etc.) that are valid for the Device Logic aswell as themyDatanet server. The definitions of the
Data Descriptor also apply for accessing the data of themyDatanet server via the API.

The information type should be taken into consideration when assigning the data to the relevant containers
("histdata0" - "histdata9" or "config0" - "config9"). The "histdata0" - "histdata9" containers should be used for
time series. If there ismeasurement data that will be generated frequently and data that will only be
generated rarely, it is recommended to use two different containers (e.g. "histdata0" for the frequently
generated and "histdata1" for the rarely generated). Similar also applies to the configuration data, for which
the "config0" - "config9" containers are provided.When it comes to the configuration data, it is recommended
to take a grouping based on logical context into consideration in addition to the frequency of change.

Note: A well thought out selection of the containers helps to reduce the required data volume and
associated costs.

Rev. 03 37

5.2 Functionality of the internal data memory
Structure Circular buffer

Total size 3MB

Number of sectors 8

Sector size 393.216 Byte

The internal datamemory of themyDatalogEASY IoT is designed as a circular buffer with 8 sectors. If the
entire memory (3MB) is full, the sector with the oldest data is deleted fully before new data can be saved in
this sector again. Thismeans that the internal datamemory comprises at least 2,625MB of valid data and a
maximumof 3MB .

For this reason, it is recommended to coordinate the data transmission and record interval in such a way that
amaximumof 2,625MB has to be recorded between two transmissions. If it can be expected that individual
transmissions fail due to poor network coverage, thismust also be taken into consideration when calculating
the data volume to be saved. Additionally, it must be noted that the system-related overhead is 11 Byte per
data record and that the first 8 Byte of each sector are reserved for the internal memorymanagement. The 11
Byte overhead already includes the timestamp, so it does not have to be taken into account when calculating
the size of the entire record. If there is not enough free space in a sector to save the entire data record, the
data record is written to the next sector. Thismeans that a data record is not written over the sector limits.

Note:

Additional explanation regarding the functionality of the circular buffer

Datamemory after the first data is recorded:

Datamemory once 3MB has been recorded

Datamemory if further data is recorded once 3MB has already been recorded

38 Rev. 03

Chapter 5 Functional principle

Note:

Additional explanation on calculating the data volume to be saved:

To provide a clear and simple overview, the following example assumes that the sectors can only record two
complete data records.

1) Freememory in sector 1 is not enough to record a full data record (overhead + data).

5.3 Memory organisation

Organisation of the myDatalogEASY IoT memory
1)This memory block is only available if it was initialised via the "rM2M_RegInit()" function.

Rev. 03 39

The size of the binarymust not exceed 256kB for the transmission to themyDatalogEASY IoT . If necessary,
the data area of the binary can be compressed using a compiler instruction (#pragma amxcompress <0-3>).
The binary (256kB), 10 configuration blocks (4000 Bytes each), 4 registrationmemory blocks (1kB each) and
measurement data (3MB) are stored in the flashmemory of themyDatalogEASY IoT . To execute via the
script engine, the data area of the binary is decompressed, if necessary, and copied to the RAM. The
maximum size for the decompressed data area of the binary in the RAM is 64kB . The optional registration
memory blocks (e.g. REG_APP_STATE) which can be initialized via the "RM2M_RegInit ()" function are also
stored in RAM.

5.4 Procedure in case of connection aborts
If the connection is terminated, another attempt to establish a connection ismade after 2min. for all
connections, except for "online" mode. Up to 2 attempts to establish a connection aremade.

Connection could be established during first retry.

Connection could not be established despite 2 retries.

ACTIVE
Connection to themyDatanet server established. Data is being transmitted.

STARTED
Connection establishment initiated.

NOT ACTIVE
The system is waiting for the next connection establishment to be initiated. The last connection attempt
was successful and all of the data was transmitted.

WAKEUPABLE
Themodem is logged into the GSMnetwork and the systemwaits for the next connection attempt to be
initiated. The last connection attempt was successful and all of the data was transmitted. As themodem
is logged into the GSMnetwork, the connection establishment can also be initiated via themyDatanet
server (see "myDatanet Server Manual " 805002).

40 Rev. 03

Chapter 5 Functional principle

RETRY
The systemwaits 2min. until the next attempt to establish a connection.

FAILED
The system is waiting for the next connection establishment to be initiated. During the last connection
attempt no data or not all of the data was transmitted.

Note: Depending on the type of communication error, the systemmay be restarted (e.g. to
reinstall the SIM chip) before the "FAILED" status is set.

The current connection status can be read out at any time via the "rM2M_TxGetStatus()" function.

5.4.1 Connection abort in "online" mode
A single direct connection attempt ismade if the connection is lost in "online" mode. If it is not possible to
establish a connection, 2 further attempts of the standard retry sequence aremade at intervals of 2min. . If the
connection was not established during the last retry, the device remains offline until the next connection
attempt is triggered via the "rM2M_TxStart()" function.

5.4.2 Connection abort during a Device Logic download
The device reacts to a connection abort during the Device Logic download with the standard retry sequence
(2 connection attempts at intervals of 2min.). In addition to this, the "SCRIPT_ERR, SCRIPT DOWNLOAD
ERROR" log entry is entered in the device log as soon as the device has detected the connection abort.
Although this does not affect the existing Device Logic. It can continue to be executed.

5.5 Timeout monitoring in online mode
In onlinemode, themyDatalogEASY IoT sends a keep alive ping to themyDatanet server by default at an
interval of 15 min. and 3 sec. (i.e. every 903 sec.). This enables the server to detect whether the connection to
themyDatalogEASY IoT is still available. To be able to detect interruptions to the connectionmore promptly,
the standard interval for the keep alive ping can be adjusted via the "rM2M_SetTCPKeepAlive()" function.

The "Bidirectional alive ping" can be activated on the server to ensure that themyDatalogEASY IoT can also
promptly detect an interruption to the connection. This bidirectional alive ping can be activated globally for the
complete server, for a specific customer or for a single site (see "myDatanet Server Manual " 805002). If the
bidirectional alive ping is enabled, themyDatanet server sends a corresponding response to every keep alive
ping from the device (keep alive response). Following receipt of the first keep alive response, the
myDatalogEASY IoT will expect to receive a regular keep alive response within 10 sec. of the keep alive
ping. If the keep alive response fails to appear three times in a row, an attempt is initiallymade to re-establish
the communication without completely disconnecting the connection (i.e. by only reinitialising the connection
on a TCP level only). Only once this has not worked will themyDatalogEASY IoT disconnect the connection
to themyDatanet server completely and will immediately establish the connection again. The recording of the
round trip time [ms] is also activated upon receipt of the first keep alive response. Thismeans that the time
until the keep alive response has been received by the server ismeasured for every subsequent keep alive
ping. The "rM2M_TxItfGetStats()" function can be used to read the last determined "Round trip time" of the
system.

Rev. 03 41

5.6 Automatic selection of the GSM network
TheGSMnetwork to which the device should register must be selected, as themyDatalogEASY IoT is
equipped with a SIM chip that provides amobile connection via a variety of international service providers
(see www.microtronics.com/footprint). This is completed automatically by the device.

5.7 Determining the GSM/UMTS/LTE signal strength
The internal update rate of themeasurement value for the GSM/UMTS/LTE signal strength is dependent on
the type of connection selected via the "rM2M_TxSetMode()" function:

l Interval: Updated during connection establishment
l Interval & Wakeup: Updated every 30 seconds
l Online: Updated every 5 seconds

The "rM2M_GSMGetRSSI()" function can be used to read the last determined value from the system.

5.8 Determining the GSM position data
An internal flag is set by the firmware every 24h , which ensures that the GSMposition data is also
determined the next time the "rM2M_TxStart()" function is called up. The positioning can however also be
suppressed by setting the "RM2M_TX_SUPPRESS_ POSUPDATE" flag when calling up the function. It is
also possible to trigger the determination of the GSMposition data by setting the "RM2M_TX_POSUPDATE"
flag when calling up "rM2M_TxStart()". If "Interval & Wakeup" connectionmodewas activated on the
myDatalogEASY IoT , the previously described internal flag is set by the firmware and the connection
establishment is triggered by the receipt of aWakeup SMS (i.e. via themyDatanet server), the determination
of the GSMposition data is definitely executed and cannot be suppressed. TheGSMposition data cannot be
generated if "online" connectionmode is active.

5.9 Error handling
The following transmissionmechanisms have been integrated in the firmware to ensure that problemswith
the Device Logic can be diagnosed and resolved remotely. In the event that there is no Device Logic, a
connection to themyDatanet server is established every 24h . This backup interval is set to 1h if an existing
Device Logic has been deactivated due to an error being detected by the system. The "Interval & wakeup"
connection type is activated in both cases, which enables a connection to be initiated via the interface of the
myDatanet (see "myDatanet Server Manual " 805002).

42 Rev. 03

Chapter 5 Functional principle

5.10 Registration memory blocks
In addition to 4 1kB blocks, that are saved in the flash, another one, that is saved in the RAM, can optionally
be initialised via the "rM2M_RegInit()" function. Its size can be specified during initialisation, although it is
limited to amaximumof 1kB . The registrationmemory blocks provide the option of storing device-specific
data and synchronising it with themyDatanet server. The blocks only differs with regard to their access
options and storage location. This results in predefined intended uses that are described in the following
table:

Memory block Access Memory Purpose
System-specific data

REG_SYS_OTP 1) readable:Device Logic,
myDatanet server

FLASH System information that is written once as
part of the production process

REG_SYS_FLASH 1) readable:Device Logic,
myDatanet server

FLASH System information that must be able to be
changed during operation

Application-specific data

REG_APP_OTP readable:Device Logic,
myDatanet server

writeable:Device Logic

FLASH Application-specific information that is
written once as part of the production
process (recommendation, writing it multiple
times is not prevented by the firmware)

REG_APP_FLASH readable:Device Logic,
myDatanet server

writeable:Device Logic

FLASH Application-specific information that must be
able to be changed during operation

Application-specific, volatile data

REG_APP_STATE 2) readable:Device Logic,
myDatanet server

writeable:Device Logic

RAM Application-specific information that must be
able to be changed during operation and
that does not require non-volatile storage in
the flash (e.g. current device status).

1)Writing data in these two memory blocks is reserved for the manufacturer.
2) This memory block is only available if it was initialised via the "rM2M_RegInit()" function.

Note: It is also possible to write in thememory blocks as part of the production process via the local
interfaces (USB and both UART). However, an agreement must be reached with themanufacturer to
receive information about this (see "Contact information" on page 335).

The "rM2M_RegGetString()", "rM2M_RegGetValue()", "rM2M_RegSetString()", "rM2M_RegSetValue()",
"rM2M_RegDelValue()" and "rM2M_RegDelKey()" functions are available for accessing the registration
memory blocks.

5.10.1 REG_APP_OTP
By saving the "Product Identity Profile" (PIP) in this registrationmemory block, the functions described in the
following can be initiated on themyDatanet server. The PIP consists of the following fields:

pipCustomer
Name of the customer to whom the site should be assigned [2-50 characters].

Rev. 03 43

pipCtx
Name of the site that should be created/used [2-50 characters].

pipAppId
ID of the IoT application based on which the site should be created [max. 50 characters].

pipAppVer (optional)
Version of the Device Logic currently installed on the device (e.g. 7) [Integer].

pipCtxAutocreate (optional)
Indicateswhether the site (if it does not exist yet) should be created ("0" or "1" must be saved as the
string)

l "0": creation of a new site is not permissible
l "1": new site can be created (default)

If themyDatanet server receives a PIP, the two basic scenarios are differentiated:

l There is no site with the name specified in the "pipCtx" field:

The new site is only created if the customer and application template were found on themyDatanet
server and "pipCtxAutocreate=1" or the field ismissing.

l A site with the name specified in the "pipCtx" field was found on the server:

In this case, the "pipCtxAutocreate" and "pipCustomer" fields are not relevant. The device is assigned
to the site, even if it is located within a different customer, if the application ID in the "pipAppId" field and
that of the found site match. The device ismoved to the relevant customer for this purpose. The
allocation of the existing device is deallocated if a device is already assigned to the site. The existing
device ismoved to the customer's pool.

5.11 File transfer
It is possible to register up to 60 files for the file transfer (see "FT_Register()"). A callback function, that should
be called up when a file transfer command is received, must be transferred to the "FT_Register()" function
during this process (see "Callback functions" on page 240). The callback functionmust be able to handle all
file transfer commands (see "File transfer commands" in chapter "Constants" on page 240). The file
propertiesmust also be set via the "FT_SetProps()" function as part of the registration process. If a file should
no longer be available for the file transfer, it can be removed from the registration using the "FT_Unregister()"
function.

Upon receipt of a file transfer command, a session is started that is automatically terminated after 15sec. if the
Device Logic is not handling the command correctly. Sessions can only be active one after another to prevent
any conflicts.

44 Rev. 03

Chapter 5 Functional principle

5.12 Meaning of the SIM state
The device receives information about the permissible use of the SIM chip from themyDatanet server. The
following states are defined for this SIM status:

SIM state Transmission via
Device Logic Explanation

RM2M_SIM_STATE_NONE Yes Initial state

RM2M_SIM_STATE_PRODUCTION Yes New device is in stock

RM2M_SIM_STATE_HOT Yes Valid contract

RM2M_SIM_STATE_COLD No End of contract or violation of fair use
policy

RM2M_SIM_STATE_DISCARDED No Device decommissioned

As the previous table illustrates, it is not possible to trigger the connection byDevice Logic for the "RM2M_
SIM_STATE_COLD" and "RM2M_SIM_STATE_DISCARDED" states. In this case, the functions "rM2M_
TxStart()" and "rM2M_TxSetMode()" return error code "ERROR_SIM_STATE". Contact themanufacturer,
to switch a device that is in the "RM2M_SIM_STATE_COLD" state back to the "RM2M_SIM_STATE_HOT"
state (see "Contact information" on page 335). The SIM state can be read out at any time using the "rM2M_
GSMGetInfo()" function. An entry is also added to the device log every time the SIM state changes (e.g. SIM_
STATE, HOT).

State diagram of the SIM states

Rev. 03 45

5.13 Using the external SIM slot
Important note: The chargeable "Activation code VPN SIM (300539)" featuremust be released to
be able to use the external SIM slot.

The following two conditionsmust bemet to activate communication via the external SIM card:

l The SIM cardmust be inserted in the external SIM slot (see "Inserting/replacing the SIM card" on page
59)

l The APN settings (APN, username and password) and the PIN code (if required by the SIM card) for
the inserted SIM cardmust be transferred to themyDatalogEASY IoT using the DeviceConfig
configuration program (see ""GSM" tab" on page 116) or must be set by the Device Logic via the
"rM2M_SetExtSimCfg()" function.

In the current implementation, using an external SIM card will not increase availability. Thismeans that in the
event of any communication problems relating to the external SIM card, the firmware will not automatically
switch to the internal SIM chip. This cost-oriented approach helps to prevent any resulting charges for using
the internal SIM chip as soon as the external SIM card has been activated.

To reactivate the internal SIM chip, it will not suffice to remove the external SIM card from the SIM slot. The
APN settingsmust also be deleted from themyDatalogEASY IoT using the DeviceConfig configuration
program or the Device Logic via the "rM2M_SetExtSimCfg()" function.

The following table specifies under which conditions the external SIM card or internal SIM chip is used. The
parameters are checked each time themodem is activated."---" indicates a state where it is not possible to
establish a connection.

External SIM slot
released

External SIM card
inserted

Correct APN setting
saved in the device SIM used

0 0 0 internal

0 0 1 ---

0 1 0 ---

0 1 1 ---

1 0 0 internal

1 0 1 ---

1 1 0 ---

1 1 1 external

46 Rev. 03

Chapter 5 Functional principle

The signalling of the connection status described in chapter "Procedure in case of connection aborts" on page
40, is extended by the "EXTSIM" signal when using an external SIM card.

Connection could be established during first attempt.

Connection could be established during first retry.

Rev. 03 47

Connection could not be established despite 2 retries.

EXTSIM
An external SIM card was detected following activation of themodem.

Note: To ensure that a connection can be established via the external SIM card, as previously
mentioned, the valid APN settingsmust be saved in themyDatalogEASY IoT and the
chargeable "Activation code VPN SIM (300539)" featuremust be released.

ACTIVE, STARTED, NOT ACTIVE, WAKEUPABLE, RETRY, FAILED
see "Procedure in case of connection aborts" on page 40

The current status can be read out at any time via the "rM2M_TxGetStatus()" function.

48 Rev. 03

Chapter 6 Storage, delivery and transport

Chapter 6 Storage, delivery and transport

6.1 Inspection of incoming deliveries
Check the shipment immediately upon receipt to ensure it is complete and intact. Immediately report any
discovered transport damages to the delivering carrier. Also notifyMicrotronics Engineering GmbHin writing
about this without delay. Report any incompleteness of the delivery to the responsible representative or
directly to the company headquarters of themanufacturer within two weeks (see "Contact information" on
page 335).

Note: Any claims received thereafter will not be accepted.

6.2 Scope of supply
Note: The power supply unit required for operation (see "Power supply units" on page 322) and the
antenna (see "Antennas" on page 322) are not part of the standard scope of delivery andmust be
ordered separately.

The standard scope of delivery of themyDatalogEASY IoT includes:

l myDatalogEASY IoT base unit
l 3x cable screw connections (cable diameter of 5-10 mm)
l 3x blind plugs
l 2x 2-pin connector plug
l 2x 3-pin connector plug
l 1x 6-pin connector plug
l 4x hexagon socket screw M6x30
l Housing cover
l myDatanet Tool Pen (206.646)
l MDNMagnet (206.803)

How-To-Video: Unpacking themyDatalogEASY IoT

Additional accessories such as assembly sets, antennas, power supply units, charger, etc., depending on the
order. Please check these against the delivery slip.

Rev. 03 49

https://www.microtronics.com/mydatalogeasy-iot-unpacking
https://www.microtronics.com/mydatalogeasy-iot-unpacking
https://www.microtronics.com/mydatalogeasy-iot-unpacking

6.3 Storage
The following storage conditionsmust be observed:

myDatalogEASY IoT Storage temperature -30...+85°C

Humidity 15...90%rH

PSU713 BP

(300526)

Operating temperature -20...+50°C

Storage temperature +20...+25°C

PSU413D+ AP

(300524)

Operating temperature -20...+60°C

Charging temperature -20...+60°C

Storage temperature 0... +30°C

PSU413D AP

(300525)

Operating temperature -20...+60°C

Charging temperature 0...+40°C

Storage temperature 0...+35°C

PSU DC

(300529)

Operating temperature -20...+60°C

Storage temperature 0... +35°C

Note: The table above only contains the storage conditions for the energy sources usedmost frequently for the
myDatalogEASY IoT . Please consult the appropriate factsheet for information about the storage conditions of
other power supply units.

Note: If a Li-Ion rechargeable battery is to be stored for a longer period, it is recommended to ensure
that the charge level is 40% to 60% of themaximum charge.

Important note: Remove the power supply unit from themyDatalogEASY IoT prior to storage.

Store themeasurement technology so that it is protected against corrosive or organic solvent vapours,
radioactive emissions aswell as strong electromagnetic radiation.

6.4 Transport
Protect themyDatalogEASY IoT against heavy shocks, bumps, impacts or vibrations. The original packaging
must always be used for transport.

6.4.1 Transporting power supply units
WARNING:
With the exception of the PSU DC (300529), the power supply units required to operate the
myDatalogEASY IoT are classified as hazardous goods due to the installed rechargeable
batteries or battery packs for which the following conditions must be observed during
transport.

50 Rev. 03

Chapter 6 Storage, delivery and transport

The guidelines that must be observed when transporting hazardous goods are dependent on the selected
transport route and are designed as follows:

l Transport by road: ADR Directive
l Transport by air: IATA guideline
l Transport by rail: RID guideline
l Transport by ship: IMDGguideline

The following partiesmust observe these guidelines:

l Shipping and packaging company
l Haulage contractors
l Air carriers and ground handling service providers (only if the IATA guideline is applied)
l Security personnel (particularly if the IATA guideline is applied)

When it comes to transporting hazardous goods, themost important tasks of the shipping and packaging
company are:

l Classification / identification
l Packaging
l Marking and labelling (e.g. transport stickers)
l Documentation (e.g. ADR transport documents or DangerousGoodsDeclaration)

The energy stores of the power supply unit are lithium batteries. The following pointsmust therefore be
observed in conjunction with transporting lithium batteries:

l Type of lithium battery
l Lithium ion battery
l Lithiummetal battery

l Battery energy content
l If the energy content is within the "exempt" level, this will make the transportation process easier.
l If the energy content is above the "exempt" level, the battery is classed as a "complete"
hazardousmaterial in accordance with the relevant guideline.

l Scope of the delivered package
l Battery packed individually
l Battery packed with or in the equipment

Other matters that must be taken into consideration during transport preparation and processing:

l Net weight per package
l Involved air carrier (only if the IATA guideline is applied)
l Destination country (only if the IATA guideline is applied)

Important note: All of these pointsmust be observed when compiling each delivery (including the
interdependencies).

Rev. 03 51

The "shipping and packaging company" can refer to the information provided in the following table to classify
the power supply units and subsequently determine which transport guideline to apply.

Title of the
PSU

Order
number

Type of lithium battery Energy [Wh] Lithium content [g] UN number

PSU413D+ AP 300524 Lithium ions 50,32Wh UN3480

PSU413D AP 300525 Lithium ions 48,84Wh UN3480

PSU713 BP 300526 Lithiummetal 6,6g UN3090

PSU DC+ 300798 Lithium ions 3,33Wh UN3480

6.5 Return
Every returnmust be accompanied by a fully field-out return form. This return form is available in the service
area of themyDatanet server. An RMA number ismandatory for any returns and can be obtained from the
Support & Service Centre (see "Contact information" on page 335). The return shipment of the
myDatalogEASY IoT must occur in the original packaging and with freight and insurance paid toMicrotronics
Engineering GmbH (see "Contact information" on page 335). Insufficiently cleared return shipments will
otherwise not be accepted!

52 Rev. 03

Chapter 7 Installation

Chapter 7 Installation
Important note: To prevent any damage to the device, the work described in this section of the
instructionsmust only be performed by qualified personnel.

7.1 Dimensions

Dimensions: width and height
(view of a device after assembly)

Dimensions: depth
(view of a device after assembly)

7.2 Assembling the myDatalogEASY IoT
Important note:

l All wiring workmust be performed in the de-energised state.
l Ensure installation is completed correctly.
l Improper handling can cause injuries and/or damage to the instruments.
l ThemyDatalogEASY IoT must not be operated in the field with the lid open.
l To ensure the housing is properly sealed, each of the cable screw connectionsmust only hold a
single cable.

Rev. 03 53

ThemyDatalogEASY IoT is split into several components when delivered andmust therefore be assembled
before use.

How-To-Video: Assembling themyDatalogEASY IoT

Components of the myDatalogEASY IoT

1 Connector plug (2x 2-pin, 2x 3-pin, 1x 6-pin) 4 myDatalogEASY IoT base unit

2 Power supply unit (not included in scope of
delivery)

5 4xHexagon socket screw M6x30

3 3x cable screw connections (cable diameter of 5-
10 mm)

6 Housing cover

54 Rev. 03

https://www.microtronics.com/mydatalogeasy-iot-cable-gland-installation
https://www.microtronics.com/mydatalogeasy-iot-cable-gland-installation
https://www.microtronics.com/mydatalogeasy-iot-cable-gland-installation

Chapter 7 Installation

1. Check that the content of the pack is complete.

The following step is only necessary if you want to use a customer-specific SIM card.

2. Insert the SIM card in the SIM slot as described in chapter "Inserting/replacing the SIM card" on page
59. Obviously, the first steps to open the housing and remove the power supply unit are not necessary.

Note: The chargeable feature "Activation code VPN SIM (300539)" must be released to be
able to use the SIM slot.

How-To-Video: Inserting the SIM card

3. Turn the locking nut of the cable screw connection clockwise (left-hand thread) to the stop to increase
the distance between the locking nut and engagement hook and thusmake it easier to insert the cable
screw connection into the hole in themyDatalogEASY IoT base unit. The engagement hook is not
symmetrical. One of the lugs on the engagement hook is longer.

Fig. 1 - preparing the cable screw connection Fig. 2 - preparing the cable screw connection

1 Engagement hook 3 Longer lug on the engagement hook

2 Locking nut

Rev. 03 55

https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option

4. First of all thread the connection cables of your sensors, actuators and, if necessary, the supply or
charging voltage through one of the cable screw connections in accordance with the following figure,
and then through one of the holes in themyDatalogEASY IoT base unit. Then connect the cables to
the connector plugs as described in chapter "Connecting the sensors, actuators and power supply" on
page 70. Depending on how flexible the cables are, it may be advantageous to connect them to the
connector plugs before the connector plugs are inserted in to themyDatalogEASY IoT base unit.

Important note: Only a single cablemust be threaded through the cable screw connections to
ensure the seal of the housing is not jeopardised.

Threading the connection cables in

1 Cable screw connection (cable diameter of 5-
10 mm)

3 Connector plug (2x 2-pin, 2x 3-pin, 1x 6-pin)

2 Connection cable of a sensor, actuator or the
supply or charging voltage

5. In accordance with the following figures, thread the engagement hookwith the side that has the longer
lug first (see "Fig. 2 - preparing the cable screw connection" on page 55) through the hole in the
myDatalogEASY IoT base unit. The cables that have already been threaded in are not illustrated in
this figure in the interests of clarity.

Fig. 1 - threading in the cable screw
connection

Fig. 2 - threading in the cable screw
connection

Fig. 3 - threading in the cable screw
connection

6. Tighten the locking nut by turning it clockwise (left-hand thread).

Important note: Ensure that the seal is clean and intact before tightening. Remove any
impurities and/or dirt. Themanufacturer shall not be liable for any damage to the device caused
by leaky or faulty seals.

56 Rev. 03

Chapter 7 Installation

7. Check that the seal for the cable screw connection is positioned correctly on all sides and that no
foreignmaterials have been trapped between the housing, seal and locking nut.

Important note: Themanufacturer is not liable for any damage that is caused by seals that
are not positioned correctly.

8. Connect the antenna (see "Connecting themobile network antennas" on page 83). The antenna is not
included in the scope of delivery andmust be ordered separately.

9. Insert the power supply unit. The power supply unit is designed in such a way that it cannot be inserted
incorrectly.

Note: Note that all power supply units with an integrated and rechargeable energy store are delivered
with amaximum charge of 30% in accordance with applicable transport regulations andmust therefore
be fully charged before being used for the first time (see "Charging the power supply unit" on page 305).

Inserting the power supply unit

1 Power supply unit 2 myDatalogEASY IoT base unit

The following step is not mandatory.

10. Checkwhether the connection to themyDatanet server hasworked correctly (see "Testing
communication with the device" on page 97).

Rev. 03 57

11. Close the housing cover. The best option is to tighten the four screws crosswise (torquemax. 1Nm) so
that the housing cover is positioned evenly.

Important note: Ensure that the seals are clean and intact before closing the housing cover.
Remove any impurities and/or dirt. Themanufacturer shall not be liable for any damage to the
device caused by leaky or faulty seals.

Closing the housing cover

1 myDatalogEASY IoT base unit 3 Housing cover

2 Hexagon socket screw M6x30

12. Check that the housing cover is positioned correctly on all sides and that no foreignmaterials have
been trapped between the housing and housing cover.

Important note: Themanufacturer is not liable for any damage that is caused by housing
covers that are not closed correctly.

The following step is only necessary if you are using an external supply or charging voltage.

13. Now switch on the external supply or charging voltage.

Note: If you are using a power supply unit without an integrated energy store, the external supply or
charging voltagemust be switched on before the optional step during which the connection to the server
is tested.

58 Rev. 03

Chapter 7 Installation

7.3 Inserting/replacing the SIM card
Note: The chargeable feature "Activation code VPN SIM (300539)" must be released to be able to
use the SIM slot.

How-To-Video: Inserting the SIM card

Opening the myDatalogEASY IoT

1 Hexagon socket screw M6x30 3 Housing cover

2 Power supply unit 4 Strap to remove the power supply unit

1. Remove the four screws that secure the housing cover. Now open themyDatalogEASY IoT .

Important note: In the event of adverse weather conditions including rain or in a location
where water can penetrate from above, suitablemeasuresmust be implemented to protect the
device from penetratingmoisture when the housing cover is open.

2. Remove the power supply unit from themyDatalogEASY IoT . Use the strap provided to remove the
power supply unit.

Rev. 03 59

https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option
https://www.microtronics.com/mydatalogeasy-iot-vpn-sim-option

3. Remove the SIM slot cover.

Opening the SIM slot cover

1 SIM slot cover

4. Insert the SIM as illustrated in Figure B on the circuit board of themyDatalogEASY IoT .

Figure on the circuit board of the myDatalogEASY IoT

The following step is only necessary if you want to test the connection to themyDatanet server afterwards.

5. Connect the antenna (see "Connecting themobile network antennas" on page 83). The antenna is not
included in the scope of delivery andmust be ordered separately.

6. Reinsert the cover of the SIM slot and the power supply unit.

The following step is not mandatory.

7. Checkwhether the connection to themyDatanet server hasworked correctly (see "Testing
communication with the device" on page 97).

8. Close the housing cover. The best option is to tighten the four screws crosswise (torque: max. 1Nm) so
that the housing cover is positioned evenly.

Important note: Ensure that the seals are clean and intact before closing the housing cover.
Remove any impurities and/or dirt. Themanufacturer shall not be liable for any damage to the
device caused by leaky or faulty seals.

60 Rev. 03

Chapter 7 Installation

9. Check that the housing cover is positioned correctly on all sides and that no foreignmaterials have
been trapped between the housing and housing cover.

Important note: Themanufacturer is not liable for any damage that is caused by housing
covers that are not closed correctly.

7.4 Sealing the pressure compensation
If themyDatalogEASY IoT is used in slightly corrosive environments, the pressure compensationmust be
sealed using the sticker included in the Gas protection set for myDatalogEASY IoT series (301414).

Important note:

l The sticker does not protect against high concentrations of highly corrosive gases.
l When sealing the pressure compensation, the silica gel pouchmust also be inserted in the
device of themyDatalogEASY IoT .

Note: Please note that, if the pressure compensation of themyDatalogEASY IoT has been sealed,
versiegelt wurde, any pressure probes used require a separate pressure compensation.

How-To-Video: Versiegeln desDruckausgleichs

Rear of the myDatalogEASY IoT

1 Pressure compensation

Rev. 03 61

http://www.microtronics.com/easy-gas-tight?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-gas-tight?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-gas-tight?utm_source=manual&utm_medium=qr-code&utm_campaign=video

1. Remove the pressure compensationmembrane.

Removing the membrane

2. Clean the adhesive surface with the cleaning cloth included in the Gas protection set for
myDatalogEASY IoT series (301414).

3. Seal the vent with the sticker included in the Gas protection set for myDatalogEASY IoT series .

Sealing the vent

4. Remove the four screws that secure the housing lid. Then open themyDatalogEASY IoT .

Important note: In the event of adverse weather conditions including rain or in a location
where water can penetrate from above, suitablemeasuresmust be implemented to protect the
device from penetratingmoisture when the housing cover is open.

62 Rev. 03

Chapter 7 Installation

5. Insert the silica gel pouch in themyDatalogEASY IoT .

Important note: Ensure that the pouch is inserted properly so that it is not pinched between
the base part and the housing lid when you later close the housing, thus endangering the
tightness of the device.

How-To-Video: Replacing the PSU and the silica gel pouch

Inserting the silica gel pouch

1 myDatalogEASY IoT base part 2 Silica gel pouch

Proceed as follows during this process:

1. Hold the pouch in a way that the longer side is pointing downwards.
2. Shake the bag to distribute the silica gel evenly along this longer side of the bag.
3. Fold over the top empty area of the bag to create amore compact bulging bag.
4. Insert the pouch with this folded side down in themyDatalogEASY IoT .

6. Close the housing lid. The best option is to tighten the four screws crosswise (torque: max. 1Nm) so
that the housing cover is positioned evenly.

Important note: Ensure that the seals are clean and intact before closing the housing cover.
Remove any impurities and/or dirt. Themanufacturer shall not be liable for any damage to the
device caused by leaky or faulty seals.

Rev. 03 63

http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video

7. Check that the housing cover is positioned correctly on all sides and that no foreignmaterials have
been trapped between the housing and housing cover.

Important note: Themanufacturer is not liable for any damage that is caused by housing
covers that are not closed correctly.

7.5 Installing the myDatalogEASY IoT
Important note:

l Ensure installation is completed correctly.
l Comply with existing legal and/or operational directives.
l Improper handling can cause injuries and/or damage to the devices.
l ThemyDatalogEASY IoT must not be operated in the field with the lid open.
l The pressure compensationmust be protected against contamination.
l ThemyDatalogEASY IoT is not approved for use in closed channels.

The installation site must be selected according to specific criteria. The following conditionsmust be avoided
in any case:

l Direct sunlight
l Direct weather exposure (rain, snow, etc.)
l Objects that radiate intense heat (maximumambient temperature: -20...+60°C)
l Objects with a strong electromagnetic field (frequency converter or similar)
l Corrosive chemicals or gases
l Mechanical impacts
l Direct installation on paths or roads
l Vibrations
l Radioactive emissions

Note: Leave sufficient space at the upper end to install the antenna. The space required depends on the
antenna used. Approx. 15 cm of spacemust be left beneath the device for the cable connections. Further
information regarding the installation dimensions can be found in the relevant sub-chapter.

64 Rev. 03

Chapter 7 Installation

7.5.1 Wall mounting
Themounting brackets required for wall mounting have already beenmounted on themyDatalogEASY IoT
during production.

Wall mounting

1 myDatalogEASY IoT 3 Screw (max. diameter: 4mm)

2 Mounting bracket

1. Drill the four holes for mounting in accordance with the dimensions specified in figure "Wall mounting"
on page 65. The diameters are determined by the screws that are being used and anywall plugs that
may be required.

2. If necessary, insert a wall plug into each of the four drilled holes before you screw the
myDatalogEASY IoT with attachedmounting brackets (2) to the wall (see "Wall mounting" on page
65).

Rev. 03 65

7.5.2 Pipe mounting
For the installation on a pipe the optional accessory "Pipemounting EASY IoT 30-250mm (301191)" is
required. If themyDatalogEASY IoT and the Pipemounting EASY IoT 30-250mmare ordered together, the
mounting loops included in the standard scope of delivery are replaced by those for the installation on a pipe
and aremounted on themyDatalogEASY IoT prior to shipment

Pipe mounting

1 myDatalogEASY IoT 3 Tightening strap (for pipe diameter 30-250mm)

2 Loops for pipemounting (for pipe diameter 30-
250mm)

1. Thread the tightening straps (3) through the appropriate openings in themounting loops (2).

2. Position themyDatalogEASY IoT with attachedmounting loops (2) on the pipe and use the provided
tightening straps (3) to fasten themyDatalogEASY IoT .

66 Rev. 03

Chapter 7 Installation

7.5.3 Outdoor installation
When installing themyDatalogEASY IoT outdoors, it needs to be protected from direct sunlight and direct
weather exposure (rain, snow, ...). To do so, the "Housing for outdoor installation 300x200x150mm
(301173)" can be used. The housing for outdoor installation already includes amultiband antenna suitable for
all variants of themyDatalogEASY IoT .

7.5.3.1 Attaching the housing for outdoor installation to a wall

To attach the "Housing for outdoor installation 300x200x150mm (301173)" to a wall, the "Wall mounting set
for housing 300x200x150mm(301185)" is required as an additional accessory. If themyDatalogEASY IoT ,
the Housing for outdoor installation 300x200x150mmand theWall mounting set for housing
300x200x150mmare ordered together, themyDatalogEASY IoT is installed in the housing for outdoor
installation (incl. connection of antenna cables) and the brackets for installation on a wall aremounted on the
housing prior to shipment.

Wall mounting

1 Screw (max. diameter: 8mm) 3 Multiband antenna

2 Mounting bracket 4 Housing for outdoor installation 300x200x150mm

1. Drill the four holes for mounting in accordance with the dimensions specified in figure "Wall mounting"
on page 67. The diameters are determined by the screws that are being used and anywall plugs that
may be required.

2. If necessary, insert a wall plug into each of the four drilled holes before you screw the Housing for
outdoor installation 300x200x150mm with the installedmounting brackets (2) to the wall (see "Wall
mounting" on page 67).

Rev. 03 67

7.5.3.2 Attaching the housing for outdoor installation to a pipe

To attach the "Housing for outdoor installation 300x200x150mm (301173)" to a pipe, the " Pipemounting set
for housing 300x200x150mm (301184)" is required as an additional accessory . If themyDatalogEASY IoT ,
the Housing for outdoor installation 300x200x150mmand the Pipemounting set for housing
300x200x150mm are ordered together, themyDatalogEASY IoT is installed in the housing for outdoor
installation (incl. connection of antenna cables) and the brackets for the installation on a pipe aremounted on
the housing prior to shipment.

Pipe mounting

1 Tightening strap (for pipe diameter 60-300mm) 3 Multiband antenna

2 Bracket for pipemounting (for pipe diameter 60-
300mm)

4 Housing for outdoor installation 300x200x150mm

1. Position the Housing for outdoor installation 300x200x150mmwith the installedmounting brackets (2)
on the pipe and use the tightening straps (1) icluded in the scope of delivery to attach the Housing for
outdoor installation 300x200x150mm .

68 Rev. 03

Chapter 7 Installation

7.6 Safety instructions for cabling
Important note: To avoid any damage, always switch off the voltage supply to the device when
performing electrical connections.

When connections aremade to themyDatalogEASY IoT , the following warnings and informationmust be
observed, in addition to the warnings and information found in the individual chapters on the installation.
Further safety information is included in "Safety instructions" on page 23.

Remove the power supply unit from the device before completing anywiring work.

Removing the power supply unit

1 Hexagon socket screw M6x30 3 Housing cover

2 Power supply unit 4 Strap to remove the power supply unit

Rev. 03 69

7.6.1 Information on preventing electrostatic discharges (ESD)
Important note: Maintenance procedures that do not require the device to be connected to the
power supply should only be performed once the device has been disconnected from themains
power supply to minimise hazards and ESD risks.

The sensitive electronic components inside the device can be damaged by static electricity, which can impair
the device performance or even cause the device to fail. Themanufacturer recommends the following steps
to prevent any damage to the device caused by electrostatic discharges:

l Discharge any static electricity present on your body before handling the electronic components of the
device (such as circuit boards and components attached thereto). To do this, you can touch a grounded
metallic surface such as the housing frame of a device or ametal pipe.

l Avoid any unnecessarymovements to prevent the build-up of static charges.
l Use antistatic containers or packaging to transport components that are sensitive to static.
l Wear an antistatic wristband that is grounded via a cable to discharge your body and keep it free of
static electricity.

l Only touch components that are sensitive to electric charges in an antistatic working area. If possible,
use antistaticmats and work pads.

7.7 Electrical installation
Important note: Only qualified personnel should undertake the installation described in this chapter
of the operating instructions to avoid any damage to the device.

7.7.1 Connecting the sensors, actuators and power supply
Important note:

l All wiring workmust be performed in the de-energised state.
l Ensure installation is completed correctly.
l Comply with existing legal and/or operational directives.
l Improper handling can cause injuries and/or damage to the instruments!
l Run all data and power cables so that they do not pose a trip hazard and ensure that cables do
not have any sharp bends.

l ThemyDatalogEASY IoT must not be operated in the field with the lid open.
l ThemyDatalogEASY IoT cannot be operated without a power supply unit.
l To ensure the housing is properly sealed, each of the 3 cable screw connectionsmust only hold
a single cable.

70 Rev. 03

Chapter 7 Installation

Connection of the sensors and power supply (view without power supply unit)

1 Mini-B USB (only for debug and script update) 3 Main terminal block (split into 2x 2-pin, 2x 3-pin, 1x
6-pin)

2 RS232 interface (7-pin JST connector) 4 Cable screw connection (cable diameter of 5-
10 mm)

1 SHIELD Cable shielding

2 GND Ground

3 RTS RTS line of the RS232 interface

4 CTS CTS line of the RS232 interface

5 RXD RXD line of the RS232 interface

6 TXD TXD line of the RS232 interface

7 VEXTRS232 Switchable sensor supply (3,3V)

Assignment of the RS232 interface

Rev. 03 71

V IN External supply or charging voltage

GND Ground (external supply or charging voltage)

NO Isolated switch contact

CC

VEXT Switchable sensor supply (3,3V)

GND Ground

UI 1 Universal input 1

UI 2 Universal input 2

UI3/A+ Universal input 3 / RS485 A 1)

UI 4/B- Universal input 4 / RS485 B 1)

GND Ground

VOUT Switchable and adjustable sensor supply (5...24V)

GND Ground

RTD+ Clamps for the external temperature sensor (two or three
wires)RTD-

TCOM

Assignment of the main terminal block

1) The RS485 interface is only available if the universal inputs 3 and 4 are not being used.

Note: The first two steps are only necessary if the device is already in operation and the wiring needs
to bemodified.

1. Remove the four screws that secure the housing cover. Now open themyDatalogEASY IoT .

Important note: In the event of adverse weather conditions including rain or in a location
where water can penetrate from above, suitablemeasuresmust be implemented to protect the
device from penetratingmoisture when the housing cover is open.

2. Remove the power supply unit from themyDatalogEASY IoT . Use the strap provided to remove the
power supply unit.

3. Then connect your sensors and actuators with the universal inputs and outputs. You will require a
cable with a 7-pin JST connector to connect the sensors and actuators to the RS232 interfaces.
Ensure that no current is present when establishing the connection. If you would like to use an external
supply or charging voltage, you should connect the corresponding cables with the V IN andGND
terminals in the de-energised state.

If themyDatalogEASY IoT should be supplied with 230VAC, either the Power supply 24V 0,63A for
top-hat rail mounting (301066) or the Power supply housing (301442) is required. Details on how to
handle these two power supply options are provided in chapter "Mains operation (230VAC)" on page
75

Important note: Only a single cablemust be threaded through the cable screw connections to
ensure the seal of the housing is not jeopardised.

4. Tighten the cable screw connections to secure the cables.

72 Rev. 03

Chapter 7 Installation

5. Affix blind plugs to all of the cable screw connections that are not required.

Important note: All unused cable screw connections on themyDatalogEASY IoT must be
sealed watertightly using the blind plugs supplied. Otherwise the degree of protection for the
entire device is not guaranteed and themanufacturer's warranty is void.

6. Connect the antenna (see "Connecting themobile network antennas" on page 83). The antenna is not
included in the scope of delivery andmust be ordered separately.

7. Insert the power supply unit.

The following step is not mandatory.

8. Checkwhether the connection to themyDatanet hasworked correctly (see "Testing communication
with the device" on page 97).

9. Close the housing cover. The best option is to tighten the four screws crosswise (torquemax. 1Nm) so
that the housing cover is positioned evenly.

Important note: Ensure that the seals are clean and intact before closing the housing cover.
Remove any impurities and/or dirt. Themanufacturer shall not be liable for any damage to the
device caused by leaky or faulty seals.

Closing the housing cover

1 myDatalogEASY IoT base unit 3 Housing cover

2 Hexagon socket screw M6x30

10. Check that the housing cover is positioned correctly on all sides and that no foreignmaterials have
been trapped between the housing and housing cover.

Important note: Themanufacturer is not liable for any damage that is caused by housing
covers that are not closed correctly.

Rev. 03 73

The following step is only necessary if you are using an external supply or charging voltage.

11. Now switch on the external supply or charging voltage.

Note: If you are using a power supply unit without an integrated energy store, the external supply or
charging voltagemust be switched on before the optional step during which the connection to the server
is tested.

7.7.1.1 Connection examples

Connection examples (digital, open collector output, 0/4...20mA, 0...2/10V)

1 Main terminal block of themyDatalogEASY IoT 4 2-wiremA sensor

2 Isolated relay contact 5 3-wiremA sensor or 3-wire U-sensor

3 Sensor with open collector output

Connection examples (active mA output)

1 Main terminal block of the myDatalogEASY IoT 2 Active mA output, transducer or isolation transformer

74 Rev. 03

Chapter 7 Installation

Note: The "Counter", "Frequency" and "PWM" operatingmodes require a permanent supply of the
sensors. One of the two switchable sensor suppliesmust be permanently active for this purpose. The
use of VEXT is recommended for this purpose (see sensor 1 in the connection example above). The
power consumption per input when the switch contact is closed can be up to 384µA due to the load of
10k086 .

Note: Since the universal inputs of the device are not galvanically isolated, it is not possible to add the
myDatalogEASY IoT to an existing 4-20mA current loop (e.g. between sensor and SPS). Use a
suitable isolation transformer in this case.

7.7.1.2 Mains operation (230VAC)

DANGER:
Deadly electric shock hazard. Only qualified personnel should undertake the installation
described in this chapter of the operating instructions.

WARNING:
Hazardous electric voltage can cause electric shock or burns. Always switch off all of the
used power supplies for the device before installing it, completing any maintenance work
or resolving any faults.

7.7.1.2.1 "Power supply 24V 0,63A for top-hat rail mounting " that can be integrated in the
housing

Note: The Power supply 24V 0,63A for top-hat rail mounting (301066) is an order option that cannot
be ordered separately and installed by the customer himself. Also, it can only be ordered in
combination with the order option Top-hat rail DIN for myDatalogEASY IoT (301070).

Connection of the 230VAC supply (view without power supply unit)

1 Power supply 24V 0,63A for top-hat rail mounting 3 230VAC supply lines

2 Top-hat rail DIN for myDatalogEASY IoT

Rev. 03 75

L Phase

N Neutral conductor

+V 24VDC output voltage (has already been connected to V IN of the
main terminal block during production)

-V Ground (has already been connected to GND of themain terminal
block during production)

Assignment of the terminals of the Power supply 24V 0,63A for top-hat
rail mounting

All steps and safety instructions in chapter "Connecting the sensors, actuators and power supply" on page 70
also apply when using "Power supply 24V 0,63A for top-hat rail mounting ". The only difference is, that the
230VAC supply lines have to be connected to the terminals "L" and "N" of the Power supply 24V 0,63A for
top-hat rail mounting instead of the terminals "V IN" and "GND" of themain terminal block.

Important note: Thewire cross section of the 230VAC supply linemust be chosen tomatch the
circuit breaker that may be present in the 230VAC supply circuit. If no circuit breaker is present, a
suitable typemust be added (Themax. power input of the Power supply 24V 0,63A for top-hat rail
mounting is 0,5A). In this case, the rated current of the added circuit breaker and the wire cross
section of the 230VAC supply linemust bematched.

76 Rev. 03

Chapter 7 Installation

7.7.1.2.2 External power supply unit "Power supply housing "

If an existing 230VAC supply circuit should be used to supply an additional device (e.g. the heating of a rain
sensor) besides themyDatalogEASY IoT with DC voltage, the "Power supply housing "(301442) can be
used. It has two separately secured 24VDC voltage outputs (T2A 250V for transmission devices, T10A 250V
for e.g. heating).

Connecting the Power supply housing to the myDatalogEASY IoT

1 Housing for outdoor installation 300x200x150mm
(optional)

4 230VAC supply lines

2 myDatalogEASY IoT 5 24VDC line to supply themyDatalogEASY IoT

3 Power supply housing

Rev. 03 77

Connecting the Power supply housing to the myDatalogEASY IoT (detailed view)

1 Connection for the external supply or charging
voltage of themyDatalogEASY IoT

5 Ground connection

2 Earthing connection 6 24VDC voltage output for heating

3 Circuit breaker 7 Fuse recess

4 24VDC voltage output for transmission device

Connection diagram

230VAC input
voltage

Protective conductor

L Phase

N Neutral conductor

24VDC Transmission device 24VDC voltage output (T2A 250V fuse)

GND Ground

24VDC Heating 24VDC voltage output (T10A 250V fuse)

GND Ground

Assignment of the terminals

1. Set the switch of the circuit breaker to the position "off".

2. Connect the 230VAC supply line to the terminals "L" and "N" of the circuit breaker (rated current 6A).

WARNING:
All wiring work must be performed in the de-energised state.

78 Rev. 03

Chapter 7 Installation

3. Complete all steps from chapter "Connecting the sensors, actuators and power supply" on page 70.

Important note: All safety instructions in chapter "Connecting the sensors, actuators and
power supply" on page 70 also apply when using the "Power supply housing ".

When reaching the step to connect the external supply or charging voltage, connect the 24VDC
voltage output of the Power supply housing intended for the transmission device to the terminals "V IN"
and "GND" of themain terminal block of themyDatalogEASY IoT .

For steps in which the supply or charging voltage should be switched on, the switch of the circuit
breaker needs to be set to the position "on".

7.7.1.3 RS485 interface extension

Note: TheRS485 interface extension for myDatalogEASY IoT (301401) is an order option that
cannot be ordered separately and installed by the customer himself.

TheRS485 interface extension for myDatalogEASY IoT adds a galvanically isolated RS485 interface aswell
as a galvanically separated 5V sensor supply (max. 50mA) to themyDatalogEASY IoT . It can be used as an
alternative to the Onboard RS485 interface if a galvanic isolation is necessary or if, besides a RS485
interface, all 4 universal inputs are also required. The control of the RS485 interface extension for
myDatalogEASY IoT is carried out via the RS232 interface of themyDatalogEASY IoT , which is then no
longer available for other tasks.

Connecting sensors or devices with RS485 interface (view without power supply unit)

1 RS232 interface (7-pin JST connector) 3 (4-pin) connection terminals

2 RS485 interface extension for myDatalogEASY
IoT

GND Ground

A+ RS485 A

B- RS485 B

+5V Galvanically isolated 5V sensor supply (max.50mA)

Assignment of the connection terminals of theRS485 interface extension
for myDatalogEASY IoT

Rev. 03 79

7.7.1.4 SDI-12 interface extension

Note: The SDI-12 interface extension for myDatalogEASY IoT (301400) is an order option that
cannot be ordered separately and installed by the customer himself.

The SDI-12 interface extension for myDatalogEASY IoT enables reading out SDI-12 sensors. It can provide
the supply of up to 3 sensors (max. 30mA). The control of the SDI-12 interface extension for
myDatalogEASY IoT is carried out via the RS232 interface of themyDatalogEASY IoT , which is then no
longer available for other tasks.

Connecting SDI-12 sensors (view without power supply unit)

1 RS232 interface (7-pin JST connector) 3 (4-pin) connection terminals

2 SDI-12 interface extension for myDatalogEASY
IoT

GND Ground

Data Data line of the SDI-12 interface1)

Data

+12V 12V Bus/sensor supply (max. 30mA)

Assignment of the connection terminals of the SDI-12 interface extension
for myDatalogEASY IoT

1) These are not two different data lines, but the signal is present at 2 connection terminals in parallel.

80 Rev. 03

Chapter 7 Installation

7.7.1.5 Earthing of sensor cables

Note: The Electrical bonding and cable support for myDatalogEASY IoT (301403) is an order option
that cannot be ordered separately and installed by the customer himself.

If the shield of a sensor cable requires earthing or needs to be included in the earthing concept of the facility,
the Electrical bonding and cable support for myDatalogEASY IoT can be used. This extension set installed in
the clamping space includes 3 shield connection terminals and adds an external earthing connection for the
connection with the earth potential of the facility to themyDatalogEASY IoT .

Earthing of sensor cables (view without power supply unit)

1 Electrical bonding and cable support for
myDatalogEASY IoT (301403)

3 Earth connection (minimum requirement for the
earth cable: 4mm²)

2 Shield connection terminal (cable diameter 3-
8mm)

1. Connect the earth connection of themyDatalogEASY IoT to the earth potential of the facility. If the
power supply unit is already inserted in the device, remove it from themyDatalogEASY IoT
beforehand (see "Replacing the power supply unit" on page 303) .

2. Remove the outer cable coating of all cables (sensor cable and/or supply of themyDatalogEASY IoT)
of which the shield should be earthed to lay bare the braid. The cable coating should be removed for a
length of approx. 2,5 cm.

3. Complete all steps from chapter "Connecting the sensors, actuators and power supply" on page 70.

Important note: All safety instructions in chapter "Connecting the sensors, actuators and
power supply" on page 70 also apply when using the "Electrical bonding and cable support for
myDatalogEASY IoT ".

Before the step for tightening the cable glands, complete the following steps.

Rev. 03 81

4. Thread the shield connection terminals into the base plate connected to the earth connection as shown
in the following figure. The small barbs of the shield connection terminalsmust snap into the
rectangular opening.

How-To-Video: Insertingthe shield connection terminals

Inserting the shield connection terminals

1 Shield connection terminal (cable diameter 3-
8mm)

2 Base plate connected to the earth connection

5. Set the sensor cable by fastenig the shield connection terminal.

Note: Ensure that the cable coating is not jammed between the base plate and the shield
connection terminal, since correct earthing cannot be guaranteed in this case. In the case of
sensor cables with an integrated pressure compensation tube, it is important to ensure that this
is not pinched off. If the contact pressure is too low, however, correct earthing cannot be
guaranteed.

Fastenig the shield connection terminals

1 Braid (lay bare on a length of approx. 2,5cm) 3 Cable coating

2 Shield connection terminal (cable diameter 3-
8mm)

82 Rev. 03

https://www.microtronics.com/mydatalogeasy-iot-shield-clamps-inserting
https://www.microtronics.com/mydatalogeasy-iot-shield-clamps-inserting
https://www.microtronics.com/mydatalogeasy-iot-shield-clamps-inserting
https://www.microtronics.com/mydatalogeasy-iot-shield-clamps-inserting

Chapter 7 Installation

7.7.2 Connecting the mobile network antennas
Important note: To ensure the correct functionality, only use antennas that are supplied by the
manufacturer.

Depending on the variant and any additional modules (e.g. GNSS receiver) that may be installed, the
myDatalogEASY IoT may have up to 3 FME-M antenna connections. The configuration ismarked on each
antenna connector. A list of available antennas can be found in chapter "Antennas" on page 322.

Note: Make sure that the selected antenna is suitable for the radio technology (e.g. 2G/3G) installed
in themyDatalogEASY IoT and for the intended region (e.g. Europe or the US).

Antenna connectors of the myDatalogEASY IoT (e.g. myDatalogEASY IoT 2G/4G EU)

The standard antenna (Portable antennamulti band FME-F , 206.826) is attached directly to the antenna
connector (see "Overview" on page 26) of themyDatalogEASY IoT . In the event of a low radio signal
strength, you can use the Dome antennamulti band FME-F 3m (301211) .

If the distance between the antenna position and themyDatalogEASY IoT is too great, you can use a 5m
Extension cable for antenna FME-F/FME-M 5m (206.805).

1. Ensure that themyDatalogEASY IoT is de-energised.

2. If you need an antenna extension, connect it to the antenna first.

3. Connect the antenna extension or antenna directly to the antenna connector of the
myDatalogEASY IoT (see "Overview" on page 26).

Important note: Do not apply toomuch force when tightening the antenna. Do not use any
tools to tighten the antenna or antenna extension; only tighten it manually.

4. Switch the voltage supply of themyDatalogEASY IoT back on.

The following step is not mandatory.

5. Checkwhether the connection to themyDatanet server hasworked correctly (see "Testing
communication with the device" on page 97).

Rev. 03 83

7.7.3 Technical details about the universal inputs
Note: The universal inputs 3 and 4 are only available if the RS485 interface is not used.

Note: The universal inputs are not electrically isolated.

7.7.3.1 0/4 to 20mA mode

Note: Above 23,96mA, the relevant input becomes highly resistive (safety shutdown to prevent damage to the
universal input).

Resolution 6,3µA

Imax 23,96mA

Load 96Ω

7.7.3.2 0 to 2V mode

Resolution 610µV

Umax 2,5V

Load 10k086

7.7.3.3 0 to 10V mode

Resolution 7,97mV

Umax 32V

Load 4k7

7.7.3.4 Standard digital modes (PWM, frequency, digital, counter)

General Umax 32V

Low <0,99V

High >2,31V

Load 10k086

PWM Measurement range 1...99%

fmax 100Hz

Minimumpulse length 1ms

Frequency Measurement range 1...1000Hz

Counter Minimumpulse length 1ms

84 Rev. 03

Chapter 7 Installation

7.7.4 Technical details about the PT100/1000 interface
The interface for the external temperature sensor automatically detects whether a PT100 or PT1000 is being
used. It is also possible to use three- or two-wire sensors. An additional link is required on two-wire sensors
(see "PT100/PT1000 2-wire" on page 85).

PT100/PT1000 3-wire PT100/PT1000 2-wire

7.7.5 Technical details about the RS485 interface
Note:

l TheRS485 interface corresponds to standard EIA-485.
l TheRS485 interface is only available if the universal inputs 3 and 4 are not being used.

TheRS485 interface of themyDatalogEASY IoT includes an input commonmode range that covers the full
area specified for RS485 (-7V...+12V). Higher voltages damage the interface. Differential signals of more
than +/-200mV within the specified input commonmode range are detected correctly. In sendmode, the
output signal is in the range of 1,5...3,3V .

Baud rate 600-115200

Stop bits 1, 2

Parity N, E, O

Data bits 7, 8

Load
resistance

Off

120Ω

The 120Ω load resistance between RS485 A and B can be activated via the "RS485_Init()" function.

Schematic diagram of the switchable load resistance

Rev. 03 85

Note: Additional explanation regarding the connection of two RS485 bus participants

Schematic diagram: Connection of two RS485 bus participants

A problem occurs if there is no connection between theGND potentials of the sender and recipient. A common
mode voltage (VCM) occurs in this case. TheGND potential differencemust not exceedmax. +/- 7V . Higher
voltages will damage the interface. Temporary overvoltages (ESD, EFT and surge) are, however, absorbed by
protective circuits.

Note: The commonmode input voltage range of -7V...+12V specified for the RS485 is determined from the
max. permissible GND potential difference (+/- 7V) and themax. permissible output voltage range of 0...5 V for
RS485.

7.7.6 Technical details about the RS232 interface
Note: TheRS232 interface of themyDatalogEASY IoT is compatible with standard TIA/EIA-232-F.

The output drivers are protected against overloading and are not damaged by a short circuit to the GND or +/-
15 V. The inputs are equipped with a 5 kΩ load resistance.

Baud rate 600-115200

Stop bits 1, 2

Parity N, E, O

Data bits 7, 8

Flow control Off

RTS/CTS

The direction of the signals corresponds to that of a DTE (e.g. PC).

Signal Type Low High
TXD O -5,4V 5,4V

RXD I <0,8V >2V

CTS I <0,8V >2V

RTS O -5,4V 5,4V

Switching thresholds

86 Rev. 03

Chapter 7 Installation

7.7.7 Technical details about the USB interface
The connection to a PC is established via the USB slave interface. It is only designated for the communication
with the web-based development environment rapidM2MStudio or the DeviceConfig configuration program.
It is not possible to access the USB interface via the device logic. A detailed description of the rapidM2M
Studio web-based development environment is provided in chapter "rapidM2MStudio " on page 143.
Explanations regarding the functionality of the DeviceConfig configuration program is provided in chapter
"DeviceConfig " on page 107.

Access to the web-based development environment rapidM2MStudio is included in theMicrotronics Partner
Program, for which you can register free of charge at the following address:

https://partner.microtronics.com

TheDeviceConfig configuration program can be downloaded free of charge from the following website:

www.microtronics.com/deviceconfig
Important note: If the antenna of the device is earthed or connected to the ground potential of
another object (e.g. installation on a control cabinet), remove the antennas before you connect the
device with the USB interface of a PC. Otherwise, this can cause a potential displacement between
the ground of the antenna and the ground of the PC, which could damage the USB interface of the
device.

7.7.8 Technical details about the Bluetooth Low Energy interface
The connection to a PC or a Bluetooth Low Energy (5.0) compatible Smartphone is established via the
Bluetooth Low Energy interface. It is only designated for the communication with the DeviceConfig
configuration program or the "tbd" smartphone app. A detailed description of the DeviceConfig configuration
program is provided in chapter "DeviceConfig " on page 107. It can be downloaded free of charge from the
following website:

www.microtronics.com/deviceconfig
Chapter ""tbd" smartphone app" on page 133 provides a detailed explanation of the "tbd" smartphone app. It
is available for Android and iOS devices and can be downloaded free of charge from "Google Play" (Android)
or the Apple "App Store" (iOS).

Rev. 03 87

https://partner.microtronics.com/
http://www.microtronics.com/deviceconfig
http://www.microtronics.com/deviceconfig

7.7.9 Technical details about the outputs

7.7.9.1 Switchable sensor supply VOUT

Note: The switchable sensor supply output is short-circuit-proof.

The output voltage can be varied in the range of 5...24V using the Device Logic (see "Vsens_On()").

Output voltage characteristics subject to the load current for VOUT = 5V

Output voltage characteristics subject to the load current for VOUT = 12V

88 Rev. 03

Chapter 7 Installation

Output voltage characteristics subject to the load current for VOUT = 15V

Output voltage characteristics subject to the load current for VOUT = 24V

7.7.9.2 Switchable sensor supply VEXT

Note: The switchable sensor supply output is short-circuit-proof.

The switchable sensor supply VEXT is applied to themain terminal block (see "Connecting the sensors,
actuators and power supply" on page 70).

Uout 3,3V

Imax 180mA

Rev. 03 89

7.7.9.3 Switchable sensor supply VEXTRS232
Note: The switchable sensor supply output is short-circuit-proof.

The switchable sensor supply VEXTRS232 is applied to the connector of the RS232 interface (see
"Connecting the sensors, actuators and power supply" on page 70).

Uout 3,3V

Imax 180mA

7.7.9.4 Isolated switch contact (NO, CC)

Important note: The user must ensure that the current on the isolated switch contact does not
exceed 130mA .

Equivalent circuit diagram for the isolated switch contact

Imax 130mA

Umax 32V

Ron 35Ω

fmax 1000Hz

7.7.10 Technical details about energy management
The device will work until 3,4V as intended, if themyDatalogEASY IoT is operated without an external supply
or charging voltage (V IN). Themodem is deactivated from this threshold and the "UV MODEM LOCKOUT"
log entry is entered in the device log. Thismeans that the connection is disconnected if the device is in "online"
mode or is logged in to the GSMnetwork ("Interval & wakeup"mode). The function returns the "ERROR"
result if an attempt to establish the connection using the "rM2M_TxStart()" function ismade once this
threshold is reached. The "rM2M_TxSetMode()" function also returns the "ERROR" result if an attempt to
activate "Interval & wakeup" or "online" mode ismade. The Device Logic is executed as intended once this
threshold is reached.

The Device Logic execution is only stopped if the internal supply voltage falls below 2,9V and the
myDatalogEASY IoT switches to energy savingmode in which only the charge control is active. In this case,
the charge control tries to charge the rechargeable battery up to 3,8V . The "UV_LOCKOUT" log entry is also
entered in the device log when activating energy savingmode. The rechargeable battery of the power supply
unit can be charged up again if the device is in energy savingmode and an external supply or charging
voltage (V IN) is connected. Otherwise themyDatalogEASY IoT remains in this energy savingmode until the
rechargeable battery is completely discharged.

Energy savingmode is terminated and Device Logic execution is activated again, once the rechargeable
battery voltage exceeds 3,2V when recharging. Themodem continues to remain inactive until the

90 Rev. 03

Chapter 7 Installation

rechargeable battery voltage exceeds 3,5V . Only then can aGSM connection be established again and the
device resumes normal operation.

When an external supply or charging voltage (V IN) is used, the charge control ensures that the rechargeable
battery of the power supply unit is charged. The following operating states are possible:

l Active energy savingmode (i.e. Device Logic inactive) or no Device Logic installed:

The charge control tries to charge the rechargeable battery to 3,8V or tomaintain the voltage at this
level.

l Device Logic active but the charge control was not configured via the "PM_SetChargingMode"
function:

The charge control is activated and the rechargeable battery is charged to themaximum voltage if the
state of charge of the rechargeable battery for the power supply unit falls below 50%. The charge
control is then deactivated again. This is designed to optimise the service life of the rechargeable
battery.

l Device Logic active and the charge control was configured via the Device Logic:

The functionality of the charge control can be configured via the "PM_SetChargingMode" function.
There are three options available:

l PM_CHARGING_OFF: Charge control deactivated

l PM_CHARGING_NORMAL: The charge control is activated and the rechargeable battery is
charged to themaximum voltage if the state of charge of the rechargeable battery for the power
supply unit falls below 50%. The charge control is then deactivated again. This is designed to
optimise the service life of the rechargeable battery.

l PM_CHARGING_SOLAR: The rechargeable battery of the power supply unit is charged to the
maximum voltage if the supply or charging voltage V IN exceeds 16V . The charge control then
remains deactivated for 12 hours unless the state of charge of the rechargeable battery for the
power supply unit drops below 95%. This charge strategy is recommended if a solar field is used
to charge the rechargeable battery.

The charge control reads out any additional information that is required, such as themaximum voltage and
ambient temperature at which charging is permitted, directly from thememory of the power supply unit. In
both charge strategies, recharging is only completed if the ambient temperature does not exceed the
permissible range of the charging temperature. The permissible charging temperature is specified in the
factsheet for the relevant power supply unit. Chapter "Power supply units" on page 322 contains an overview
of the temperature ranges of the power supply units.

7.7.11 Technical details about the energy supply

Schematic diagram of the energy supply

Rev. 03 91

V IN 12...32VDC

Power consumption

(without sensors)

typ. <1mW 1)

max. 12W

Reverse voltage
protection

No 2)

1) applies to continuous operation if the possibly available rechargeable battery of the power supply unit is fully charged
2) The reverse voltage protection is part of the protective circuit in the power supply units.

A selection of compatible power supplies is included in the chapter "Charging devices and power supply
units" on page 323. Depending on the type, the power supply unit contains a rechargeable battery
(PSU413D+ AP , PSU413D AP), a battery (PSU713 BP), or only a protective circuit (PSU DC). A list of
compatible PSUs is included in the chapter "Power supply units" on page 322. An external supply or charging
voltage is not required if the power supply unit is equipped with a battery.

7.7.11.1 PSU413D+ AP (300524)

V IN Optional

Protective circuit (V IN) 2kV overvoltage protection
Reverse voltage protection

Capacity 13,6Ah
50,32Wh

Type Li-Ion

Rechargeable Yes

Nominal voltage of the
rechargeable battery

3,75V

Operating temperature -20...+60°C

Charging temperature -20...+60°C

Storage temperature 0... +30°C

Block diagram of the PSU413D+ AP

92 Rev. 03

Chapter 7 Installation

7.7.11.2 PSU413D AP (300525)

V IN Optional

Protective circuit (V IN) 2kV overvoltage protection
Reverse voltage protection

Capacity 13,2Ah
48,84Wh

Type Li-Ion

Rechargeable Yes

Nominal voltage of the
rechargeable battery

3,7V

Operating temperature -20...+60°C

Charging temperature 0...+40°C

Storage temperature 0...+35°C

Block diagram of the PSU413D AP

7.7.11.3 PSU713 BP (300526)

V IN Not required

Protective circuit (V IN) ---

Capacity 13Ah
93,6Wh

Type Li-SOCl2

Rechargeable No

Nominal voltage 7,2V

Operating temperature -20...+50°C

Charging temperature ---

Storage temperature +20...+25°C

Block diagram of the PSU713 BP

7.7.11.4 PSU DC (300529)

V IN Required

Protective circuit (V IN) 2kV overvoltage protection
Reverse voltage protection

Capacity ---

Type ---

Rechargeable no

Nominal voltage ---

Operating temperature -20...+60°C

Charging temperature ---

Storage temperature 0... +35°C

Block diagram of the PSU DC

Rev. 03 93

7.7.11.5 PSU DC+ (300798)

V IN Required

Protective circuit (V IN) 2kV overvoltage protection
Reverse voltage protection

Capacity 900mAh
3,33Wh

Type Li-Po

Rechargeable yes

Nominal voltage 3,7V

Operating temperature -20...+60°C

Charging temperature 0...+40°C

Storage temperature 0... +35°C

Block diagram of the PSU DC+

7.7.12 Technical details about the system time
ThemyDatalogEASY IoT is equipped with a hardware real-time clock that has its own buffer battery with an
expected service life of >10 years. The system time continues to run even if the power supply unit is removed.
Thismeans that following recommissioning, valid time stamps for themeasurement and log data can be
generated immediately. Additionally, the system time is synchronised with the server each time a connection
to themyDatanet server is established.

94 Rev. 03

Chapter 8 Initial Start-Up

Chapter 8 Initial Start-Up

8.1 User information
Before you connect themyDatalogEASY IoT and place it into operation, youmust observe and comply with
the following user information!

Thismanual contains all information that is required for using the device.

Is intended for technically qualified personnel who have the relevant knowledge and experience in the area of
measurement technology.

Read thismanual carefully and completely in order to ensure the proper functioning of the
myDatalogEASY IoT .

Contact Microtronics Engineering GmbH(see "Contact information" on page 335) if anything is unclear or if
you encounter difficulties with regard to installation, connection or configuration.

8.2 Applicable documents
In addition to this operating instructions, additional instructions or technical descriptionsmay be required for
the installation, commissioning and operation of the entire system.

These instructions are enclosed to the respective additional devices or sensors or are available for download
on theMicrotronics website.

8.3 General principles
The entire measurement systemmay only be placed into operation after completion and inspection of the
installation. Study themanual thoroughly before placing into operation to prevent faulty or incorrect
configuration.

Utilise themanual to familiarise yourself with the operation of themyDatalogEASY IoT and the input screens
of themyDatanet server before you begin with the configuration.

8.4 Commissioning the system
Note: It is recommended that themyDatalogEASY IoT is first placed into operation in the office before
mounting the device permanently at the place of use. During this process, you should create a site for the later
operation on themyDatanet server (see "Creating the site" on page 139) and determine a site configuration
(including Data Descriptor and Device Logic) (see "Site configuration" on page 100). If you create the site
based on an IoT application (see "myDatanet Server Manual " 805002), the Data Descriptor and Device Logic
are taken from the IoT application and do not need to be defined separately. Take the opportunity to get to know
the functions of the device in a stable environment. You can also use suitable test signals to simulate the
sensors to establish the optimum configuration of themyDatalogEASY IoT prior to its actual first use. This
reduces the amount of time required for on-site installation to aminimum.

Rev. 03 95

The following work should be completed in the office before you go to the future location of the device:

1. If necessary, create a customer on themyDatanet server (see "myDatanet Server Manual " 805002).

2. Within the selected customer, create a site/application for operation on themyDatanet server (see
"Creating the site" on page 139).

Note: A "rapidM2M " type site or a site based on an IoT application that is compatible with the
"rapidM2M " site typemust be created to operate themyDatalogEASY IoT .

3. Configure the created site/application according to your requirements (see "Site configuration" on page
100). If the site was not created based on an IoT application, youmust determine the Data Descriptor
and Device Logic via the "Control" configuration section (see "Control" on page 101).

4. Connect the antenna (see "Connecting themobile network antennas" on page 83). The antenna is not
included in the scope of delivery andmust be ordered separately.

5. Establish a connection so that the configuration of site is transferred to themyDatalogEASY IoT . If no
script has been loaded in the device yet, this can be achieved by inserting the power supply unit as
described in the chapter "Assembling themyDatalogEASY IoT " on page 53. If a Device Logic has
already been loaded in the device, execute the operations provided in the Device Logic to trigger the
establishment of a connection.

Note: Note that all power supply units with an integrated and rechargeable energy store are delivered
with amaximum charge of 30% in accordance with applicable transport regulations andmust therefore
be fully charged before being used for the first time (see "Charging the power supply unit" on page 305).

Note: If you are using a power supply unit without an integrated energy store, the external supply or
charging voltagemust be connected before inserting the power supply unit. Details on this are provided
in the chapter "Connecting the sensors, actuators and power supply" on page 70.

Note: You can also skip this step, as a connectionmust also be initiated during the installation on site,
which transfers the configuration to themyDatalogEASY IoT at the same time.

Inserting the power supply unit

1 Power supply unit 2 Base unit

6. Use the corresponding strap to remove the power supply unit from themyDatalogEASY IoT and then,
if used, disconnect the cabling for the supply or charging voltage from the device when in a de-
energised state, if possible.

96 Rev. 03

Chapter 8 Initial Start-Up

7. Remove the antenna again.

The following work is completed directly at the location of the device:

8. Complete all of the steps detailed in the chapter "Assembling themyDatalogEASY IoT " on page 53.

9. Checkwhether the connection to themyDatanet server hasworked correctly (see "Testing
communication with the device" on page 97).

8.5 Testing communication with the device

1. Create a site for operation on themyDatanet server (see "Creating the site" on page 139).

Note: A "rapidM2M " type site or a site based on an IoT application that is compatible with the
"rapidM2M " site typemust be created to operate themyDatalogEASY IoT .

2. Configure the created site/application according to your requirements (see "Site configuration" on page
100). If the site was not created based on an IoT application, youmust determine the Data Descriptor
and Device Logic via the "Control" configuration section (see "Control" on page 101).

3. Connect the antenna (see "Connecting themobile network antennas" on page 83). The antenna is not
included in the scope of delivery andmust be ordered separately.

4. Establish a connection. If no script has been loaded in the device yet, this can be achieved by inserting
the power supply unit as described in the chapter "Assembling themyDatalogEASY IoT " on page 53.
If a Device Logic has already been loaded in the device, execute the operations provided in the Device
Logic to trigger the establishment of a connection.

Note: Note that all power supply units with an integrated and rechargeable energy store are delivered
with amaximum charge of 30% in accordance with applicable transport regulations andmust therefore
be fully charged before being used for the first time (see "Charging the power supply unit" on page 305).

Note: If you are using a power supply unit without an integrated energy store, the external supply or
charging voltagemust be connected before inserting the power supply unit. Details on this are provided
in the chapter "Connecting the sensors, actuators and power supply" on page 70.

Inserting the power supply unit

1 Power supply unit 2 Base unit

Rev. 03 97

5. Wait until themeasurement instrument list indicates that the device is connected to the server (rotating
arrows).

With the exception of the "Online" connection type (see "rM2M_TxSetMode()"), the time during which
themyDatalogEASY IoT is connected to the server is very short. It can therefore also be checked
whether the time stamp of the last connection (under the green status symbol) has been updated.

The following steps are only necessary, if you simultaneously want to test themeasurement value acquisition
and data transmission.

6. Complete all of the steps detailed in the chapter "Assembling themyDatalogEASY IoT " on page 53.
This includes connecting the sensors.

Important note: All wiring workmust be performed in the de-energised state.

7. You can use the "Reports" of themyDatanet server to check the data transmission (see "myDatanet
Server Manual " 805002). The configuration of the Data Descriptor (see "Data Descriptor " on page
289) is required for this purpose.

8. Once you have completed the necessary preparations, initiate a transmission directly on the device if
you have included this in your Device Logic. If you have not included an option to trigger a transmission,
wait for the next scheduled data transmission.

9. Evaluate the incoming data.

98 Rev. 03

Chapter 9 User interfaces

Chapter 9 User interfaces
The configuration of themyDatalogEASY IoT is carried out via the web interface on themyDatanet server
(see "User interface on themyDatanet server" on page 100), which your responsible sales partner will
provide to you.

9.1 User interface on the myDatalogEASY IoT

9.1.1 Operating elements
The operating elements of themyDatalogEASY IoT can still be operated when the housing is closed.

Operating elements

1 Solenoid switch 2 Two-colour LED

3 Lid reed contact

9.1.1.1 Solenoid switch

The solenoid switch is operated using theMDN Magnet (206.803) included in the scope of supply. The
"Switch_Init()" function can be used to determine whether the solenoid switch is evaluated by the firmware or
Device Logic.

Report Operation by the user Operation
Firmware Press and hold for at least 3 sec.

and then release
Initiation of the transmission

Device Logic Press Call up of the public function, for which the index is
transferred to the "Switch_Init()"functionRelease

9.1.1.2 Three-colour LED

The "Led_Init()" function can be used to determine whether the three-colour LED is controlled by the
firmware or Device Logic. If the three-colour LED has been configured in such a way that it is controlled by the

Rev. 03 99

firmware, it is designed to signal the current operating state. The state of the three-colour LED can otherwise
be controlled by the "Led_On()", "Led_Off()", "Led_Blink()" , "Led_Flash()" und "Led_Flicker()" Device Logic
functions.

Three-colour LED Colour Description
Flickering Green Establishing connection

Lights up Green GPRS connection or USB connection established

Off --- Normal operation/script processing until the next transmission

Operating states (Three-colour LED controlled by the firmware)

9.1.1.3 Lid reed contact

The lid reed contact is operated using themagnet contained in the housing cover. The function "LidCover_
Init()" can be used to activate the evaluation of the lid reed contact via the device logic.

Evaluation Operation by the user Operation
Device Logic Press Calling up of the public function whose indexwas

passed to the "LidCover_Init" functionRelease

9.2 User interface on the myDatanet server

9.2.1 Site configuration
Note: Depending on the respective user level, some of the configuration fields mentioned in the following sub-
chapters may be hidden. In this case, please contact the administrator of themyDatanet server.

Click on the name of the site in the list of sites to open the input screen for configuring the site (see
"myDatanet Server Manual " 805002).

9.2.1.1 Site

Customer
Specifies to which customer the site is assigned

symbol
Assign site to another customer

Name
Site designation (not relevant for the device or data assignment) [2-50 characters]

Device S/N
Serial number of the device that is linked to the site (device assignment!)

Application
Name of the IoT application based on which the site was created

Application version
Version number of the IoT application that is currently installed on the site. If the version number of the
site is not the same as the version number of the device logic installed on the device then the version
number of the device logic installed on the device is displayed in addition to the version number of the
site.

100 Rev. 03

Chapter 9 User interfaces

Tags
List of tags that are already assigned to the site. This assignment can be cancelled by clicking on the
cross next to the title of the tag. The input screen for assigning tags can be opened by clicking on the
plus symbol.

9.2.1.2 Comments

Comments
Free comment field (is also displayed below the device type in the site/application list)

9.2.1.3 Control

Note: This configuration section is not visible if this site was created based on an IoT application (see
"myDatanet Server Manual " 805002).

Device logic
type

Off Device logic deactivated

Pawn Activates device logic processing

Device logic
source

Pawn source
code

Device logic Input window for editing the device logic that is loaded into
themyDatalogEASY IoT (see "Device Logic" on page
149)

Upload a
compiled script

File upload Selection of the device logic binary file (*.amx) that is
uploaded to themyDatanet server and is loaded into the
myDatalogEASY IoT during the next connection. The file
path is only displayed as long as the input screen for
configuring the site has not been closed.

Data descriptor Input window for configuring the Data Descriptor (see "Data Descriptor " on page 289)

9.2.1.4 Configuration 0 - Configuration 9

Note: These configuration sections are only visible if the logical structure of the corresponding configuration
data block was defined using the Data Descriptor (see "Data Descriptor " on page 289). The name of the
configuration section is also defined via the Data Descriptor .

These configuration sections ensure that the parameters from the customer's freely definable, independent
memory blocks can be edited and displayed via the interface of themyDatanet server. For this purpose, the
logical structure of the configuration data blocksmust be defined with the help of the Data Descriptor (see
"Data Descriptor " on page 289).

Rev. 03 101

9.2.1.5 Alarm settings

Acknowledgement Standard The global server setting is used to determine whether
alarmsmust be acknowledged automatically or manually.

automatic Alarms are acknowledged automatically as soon as all of
themessages have been sent. If SMS that have a tariff with
a delivery confirmation function have also been sent,
acknowledgement is provided after delivery confirmation.

manual Alarmsmust be acknowledged by the user.

Transfer volume Standard The setting for the transfer volume alarm is taken from the
global server settings.

off The transfer volume alarm is deactivated.

individual The level at which the transfer volume alarm should be
triggered can be entered in the adjacent field in KiB.

Offline alarm after alarm in the event that the device does not report for longer than the set time (00:00
alarm deactivated).

Title user alarm 1 Freely selectable title for user-defined alarm 1. If the user-defined alarm 1 is triggered
by a device connected to the site, the server will use this text to signal the alarm. The
same applies to user-defined alarm 2 and 3.

Title user alarm 2 Freely selectable title for user-defined alarm 2

Title user alarm 3 Freely selectable title for user-defined alarm 3

102 Rev. 03

Chapter 9 User interfaces

9.2.1.6 Basic settings

Time zone Regional settings (not relevant for raw measurement data as this is stored in
UTC)

Daylight saving time Configuration for automatic time adjustment

Standard The configuration for the time adjustment is adopted by the
global server setting.

Off Automatic time adjustment deactivated

USA Predefined setting for the American area

EU Predefined setting for the European area

Default report Selection of the report that is loaded by clicking on the device link in themaps

Off No report is loaded.

"Name of a report" The selected report is loaded.

Report template Selection of the report template used to display the data when clicking on the
symbol to display themeasurement data, which is located in the list of
sites/applications. Only the report templates in which the site/application type of
the first wild card is compatible with the site/application that is currently being
edited are displayed in the dropdown list. The symbol to display the
measurement data is only displayed in the list of sites/applications if a report
template has been selected.

(not assigned) The symbol to display themeasurement data is not
displayed in the list of sites/applications.

"Name of a report
template"

Name of the report template used to display the
measurement data

Change log configuration Selection of which changes to the configurations should be logged

web api Changes that were implemented via the server interface or
REST-API are logged.

web device api Changes that were implemented via the server interface,
by the device itself or the REST-API are logged.

9.2.1.7 FTP export settings

Note: This configuration section is only visible if the "FTP Agent Extended" licence for themyDatanet server
has been enabled.

FTP export profile off FTP export deactivated

"Name of an
FTP export
profile"

List with the FTP export profiles that were created on themyDatanet
server (for creating an FTP export profile, see "myDatanet Server
Manual " 805002).

Settings of the
selected profile

Shows an overview of themost important parameters of the selected FTP export profile

FTP directory Makes overwriting the standard directory of the selected FTP export profile possible
[0-100 characters]

Last export Time stamp of the last FTP export

Rev. 03 103

9.2.2 Device configuration
Note: Several of the configuration fields in the following sub chapters may possibly be hidden depending on the
respective user level. In this case, contact themyDatanet server administrator.

You can reach the input screen for configuring the device by clicking on the serial number in the list of
sites/applications (see "myDatanet Server Manual " 805002) or by clicking on the device name in the device
name list (see "myDatanet Server Manual " 805002).

9.2.2.1 Comments

Comments
Free comment field (is also displayed below the site name in the site/application list)

9.2.2.2 Measurement instrument

Customer Name of the customer to whom themeasurement instrument is assigned

Tags List of the tags that are already assigned to themeasurement instrument. This
assignment can be cancelled by clicking on the cross next to the title of the tag. The input
screen for assigning the tags is opened by clicking on the plus symbol. This enables
existing tags to be assigned and new tags to be created.

Serial number Serial number of the instrument

Instrument class The instrument class of the site and instrument must match for an instrument to be able
to be connected to a site. Once the instrument has been created via the server interface,
the instrument class can only be changed up until the first connection of the instrument to
the server. If an instrument class, that does not match the actual class of the instrument,
is selected when the instrument is created it is automatically corrected during the first
connection.

Telephone
number

Telephone number of the SIM card. The control SMSmessages (e.g. wakeup) are sent
to this number. Format: +43555837465

Instrument flags Additional information regarding the instrument class (for internal use)

Firmware version Current software version installed on themeasurement controller

Last connection In each case, the last time stamp of the affected operation

Last wakeup

Last
disconnection

Last transmission
error

Last Aloha
connection

Wakeup SMS
count

Number of wakeup SMS sent to this device since the last connection. This counter is
reset at/during each successfully established connection.

104 Rev. 03

Chapter 9 User interfaces

Device Logic sync Productive If the Device Logic installed on the device and saved on the
server do not match, the Device Logic saved on the server is
loaded in to the device.

Development (sync) The Device Logic on the device and server are synchronised.
The one with the latest time stamp is transferred to the other
one.

Development (no
sync)

The Device Logic on the device and server are not
synchronised.

Firmware update Off Firmware update is deactivated.

On As soon as a new version of the selected firmware type is
available, this is installed immediately.

Even if tag ismissing Firmware is also transferred to the device if the device has not
transmitted the current firmware version to the server (NOT
RECOMMENDED!).

Allow downgrade Facilitates the installation of an older firmware version than the
one on the device (NOT RECOMMENDED!)

Once Performs a single firmware update. If no new firmware is
available or the firmware was installed successfully, the
firmware update is automatically switched to "OFF".

Ignore The firmware update is deactivated and no information is
provided about available firmware updates.

Firmware type Released Only firmware versions that have successfully undergone
internal and field testing are installed (this practically eliminates
malfunctions).

Release candidate Only firmware versions that have successfully undergone
internal testing are installed (malfunctions cannot be excluded).

Beta release Even firmware versions that have not successfully undergone all
of the internal tests are installed (malfunctionsmay occur).

Identification String specifying the hardware platform implemented in the device and the
corresponding hardware version (i.e. the rapidM2Mmodule identification).

Hardware version Hardware version of themyDatalogEASY IoT

9.2.2.3 GPRS

SIM tariff
Selected SIM tariff

Rev. 03 105

Chapter 10 DeviceConfig

10.1 General
TheDeviceConfig configuration program can be downloaded free of charge from the following website:

www.microtronics.com/deviceconfig
The tool is used for configuration, maintenance, fault analysis and synchronisation purposes. It is compatible
with all myDatanet devices equipped with a USB interface, wirelessM-bus interface or Bluetooth Low
Energy.

The requirements regarding configuration andmaintenance vary depending on the type of device. To ensure
simple and intuitive operation, the user interface of the DeviceConfig therefore automatically adjusts to the
relevant device that is connected. In addition to the standard functions, the tool also supports device-specific
processes (e.g. calibration, zero point adjustment).
The DeviceConfig enables you to complete the following tasks:

l Synchronisation of measurement data and configuration between device and server (specifically for
deviceswithout GSM/GPRSmodem)

l Basic configuration of the device (e.g. measurement and transmission cycle)
l Read out and analysis of the device log
l Calibration, trimming and zero point adjustment (special knowledge and password required)
l Update the firmware

10.2 Prerequisites
Interfaces 1 xUSB

Operating system Win XP

WindowsVista

Windows 7

Windows 8

Windwos 10

Internet connection Recommended

Required disk space approx. 50 MB

Rev. 03 107

http://www.microtronics.com/deviceconfig

10.3 Functional principle
The following description specifically refers to the use of the configuration programDeviceConfig in
conjunction with themyDatalogEASY IoT .

Functional principle

1 myDatalogEASY IoT 4 myDatanet server

2 USB BLE-Adapter 5 Client that accesses the interface of the
myDatanet server via the web browser

3 PC with the DeviceConfig configuration program
installed

Important note: TheUSB interface is intended as amainenance interface that is only accessible
once the housing has been opened. Themanufacturer is not liable for damage to the device, e.g. due
to the ingress of moisture, which can be attributed to opening the housing.

TheDeviceConfig configuration program either communicateswirelessly (Bluetooth Low Energy) with the
myDatalogEASY IoT using the USB BLE-Adapter (300685) or directly with themyDatalogEASY IoT via a
USB connection.

Note: For the wireless (Bluetooth Low Energy) communication, the chargeable feature "Activation
code BLE (300968)" must be unlocked or the order option "Feature activationg BLE (300972)" is
required for the device.

108 Rev. 03

The functions provided with the DeviceConfig configuration program include:

l Synchronisation of measurement data and configuration between device and server (see ""Sync" tab"
on page 121)

l Switching between the integrated SIM chip and the external SIM card (see ""GSM" tab" on page 116)
l Read out and analysis of the device log (see ""Log" tab" on page 118)
l Update the firmware(see ""Firmware" tab" on page 120)
l Entering the activation code in order to unlock chargeable features (see ""Features" tab" on page 121)

As soon as the data has been transferred to themyDatanet server, it is available via all of the server's
interfaces (e.g. HTTP/HTTPS, as illustrated in the functional principle above) in the sameway as the data
from all of the other myDatanet devices.

10.3.1 USB BLE-Adapter
TheUSB BLE-Adapter (300685) is not included in the scope of delivery of themyDatalogEASY IoT . It is
required because standard PCs and laptops often do not have a Bluetooth Low Energy interface that is
necessary for communication with themyDatalogEASY IoT .

USBBLE-Adapter

1 USB connector (type A) 2 Antenna

The use of USB extension cables of up to 180 cm is possible without any problems.

Rev. 03 109

10.4 Installation
The following chapter describes the installation process inWindows 7.

1. Execute the "InstDeviceConfig.exe" file to start the installation process.

Note: Only connect the device or USB BLE-Adapter (300685) to your PC once the installation process
has completed as the required drivers are only installed during this process.

DeviceConfig setup wizard

110 Rev. 03

2. Follow the instructions of the setup wizard until the following screen is displayed. The following drivers
must be installed to ensure correct operation.

Installation of the USB drivers for the devices

Installation of the drivers for the USB BLE-Adapter

Installation of the USB drivers for the devices on a M1 basis

Installation of the USB drivers for the devices on a M2/M3 basis

Rev. 03 111

3. Once the following screen is displayed, close the installation process by clicking on the "Finish" button.

Complete the setup

10.4.1 Installing USB BLE-Adapter driver
Note: Information on the USB BLE-Adapter (300685) is provided in chapter "USB BLE-Adapter " on
page 109.

The following chapter describes the installation process inWindows 7.

1. Complete all of the steps described in chapter "Installation" on page 110.

2. Close the DeviceConfig configuration program, if, when completing the installation, you selected the
option for the program to be started following completion of the installation process.

3. Connect the USB BLE-Adapter (300685) to a free USB port on your PC. FromWindowsVista
onwards, the driver will be installed automatically. Instructions on installing the driver on older versions
ofWindows are included in the user manual for the DeviceConfig ("myDatanetDeviceConfig Manual "
805004).

Note: If possible, always use the sameUSB port, as the driver will have to be installed for every USB
port used to connect the USB BLE-Adapter (300685) to the PC for the first time.

4. Wait until the driver installation process is complete. This can take several minutes depending on the
performance of your PC.

112 Rev. 03

10.5 Menu of the DeviceConfig

10.5.1 Settings

"Settings" menu item

10.5.1.1 Options

The settings for the COMports to which the USB radio transmitter (206.657) or the USB BLE-Adapter
(300685) are connected can be specified and the automatic search for the available firmware versions can be
activated or deactivated via the "Settings -> Options" menu item.

The USB radio transmitter (206.657) is required for myDatanet devices that are connected to the PC via a
wirelessM-bus, while the USB BLE-Adapter (300685) is required for devices that are connected to the PC
via Bluetooth Low Energy. Information on whether your device supports one of these connectionmethods is
provided in the user manual for the respective device.

"Settings -> Options" menu item

1 Activates/deactivates the automatic search for the
USB radio transmitter (206.657) on all of the
available COMports

4 COMport that is connected with the USB radio
transmitter (206.657) (only visible when the
automatic search is deactivated)

2 Activates/deactivates the automatic search for the
USB BLE-Adapter (300685) on all of the available
COMports

5 COMport that is connected with the USB BLE-
Adapter (300685) (only visible when the
automatic search is deactivated)

3 Activates/deactivates the automatic search for
available firmware versions

Rev. 03 113

10.6 Connecting a Device via USB
1. Start the DeviceConfig configuration program.

DeviceConfig

2. Connect themyDatalogEASY IoT to the PC using a USB cable.

3. Select your device based on the serial number from the list of devices found.

List of devices found

4. Wait until the DeviceConfig has received the configuration of the device. Depending on the device,
additional tabsmay be displayed.

"Sync" tab when actively connected to the myDatalogEASY IoT

114 Rev. 03

10.7 Connecting a Device via Bluetooth Low Energy
TheUSB BLE-Adapter (300685) is required to establish a connection to a device with a Bluetooth Low
Energy interface. First of all complete the steps described in chapter "Installing USB BLE-Adapter driver" on
page 112 to install the drivers required to operate the USB BLE-Adapter . In addition, the chargeable feature
"Activation code BLE (300968)" must be unlocked or the order option "Feature activationg BLE (300972)" is
required for the device.

1. Connect the USB radio transmitter (206.657) to the USB interface of your PC.

2. Start the DeviceConfig configuration program.

DeviceConfig

3. Select your device based on the serial number from the list of devices found.

Important note: Please note that, depending on the environmental conditions, the range of
the radio transmitter of themyDatalogEASY IoT ismax. 20m .

List of devices found

Rev. 03 115

4. Wait until the DeviceConfig has received the configuration of the device. Depending on the device,
additional tabsmay be displayed.

"Sync" tab when actively connected to the myDatalogEASY IoT

1 Wireless signal level [dBm]

Note: To ensure a stable connection, the wireless signal level should be higher than -90dBm , i.e. for
example -85dBm . This is achieved by reducing the distance between themyDatalogEASY IoT and
USB BLE-Adapter , and avoiding obstacles such as walls and similar.

10.8 "GSM" tab
This tab provides the option of switching between the integrated SIM chip and an external SIM card inserted
in the SIM slot. If the external SIM card has been selected then the APN settings (APN, username and
password) and the PIN code (if required by the SIM card) can be entered via this tab and transferred to the
myDatalogEASY IoT . Here it is possible to either enter the APN settingsmanually or to select one of the
providers from the drop-down list and thus to use the settings stored for the provider in the DeviceConfig .

Note: Themanufacturer assumes no liability for the correctness of the APN settings deposited in the
DeviceConfig (APN, username and passwort). In case of doubt please contact the provider of your
external SIM card and enter the APN settings (APN, username and passwort) manually via the
corresponding fields.

116 Rev. 03

"GSM" tab

1 Drop-down list for selecting whether the internal SIM chip or the external SIM card should be used

Note: If "Internal SIM" has been selected then all other selection fields are hidden.
2 IMSI of the external SIM card inserted in the SIM slot

3 Drop-down list for selecting the provider fromwhich the external SIM card has been delivered

Note: The input fields for "APN", "user" and "password" for manual input of the APN settings are
only displayed if the "(user defined)" entry has been selected in this drop-down list.

4 PIN code

5 Access point (APN) that should be used for the connection

6 User name for dial-up via the access point

7 Password for dial-up via the access point

Rev. 03 117

10.9 "Log" tab
This tab is designed tomanage log entries. It enables the entries to be loaded from themyDatalogEASY IoT ,
to be saved as a *.tsv file and entries to be deleted from thememory of themyDatalogEASY IoT .

"Log" tab

1 Activates the detailed display of the log entries 5 Deletes the log entries from thememory of the
device

2 Time stamp of the log entry 6 Loads the log entries from the device

3 Log entry 7 Saves the loaded log entries as a tsv file

4 Parameter of the log entry 8 Window to display the loaded log entries

The coloured highlighting indicates how crucial the log entry is. The white, informative log entries are only
displayed when the detailed display of the log entries is activated (see ""Log" tab with detailed view activated"
on page 119).

118 Rev. 03

Colour Evaluation
White Information regarding the current operating state

Green

Light blue

Blue

Purple

Grey

Yellow Uncritical error

Red Critical error

"Log" tab with detailed view activated

1 Activates the detailed display of the log entries 3 Log entry that is always displayed

2 Informative log entry that is only visible if the
detailed display is activated

Rev. 03 119

10.10 "Firmware" tab
This tab enables firmware to be installed directly via the USB interface or the Bluetooth Low Energy interface.
There are two available ways to update the firmware:

l Using a previously downloaded firmware package
l By directly loading from themyDatanet server

"Firmware" tab

1 Currently installed software version 3 The firmware is loaded directly from the server
and installed on the device.

2 Button to install a previously downloaded
firmware package

120 Rev. 03

10.11 "Features" tab
This tab provides the option of unlocking chargeable features by entering the activation code. It also offers an
overview of the additional features that can be activated and which of these have already been activated.

"Features" tab

1 Feature has already been unlocked 3 Input field for the activation code

2 Feature is not unlocked. 4 Button for confirming the activation code and
unlocking the feature

10.12 "Sync" tab
This area is designed to synchronisemeasurement data and configurations betweenmyDatalogEASY IoT ,
DeviceConfig andmyDatanet server. The "Sync" tab is also available if there is no connection (USB,
wirelessM-bus or Bluetooth) to a device.

Detailed instructions on completing the synchronisation is provided in chapter "Synchronisation with the
myDatanet server" on page 124.

Rev. 03 121

10.12.1 Existing connection to the myDatalogEASY IoT
If there is an existing connection to themyDatalogEASY IoT , there is an option to only synchronise the
measurement data and configurationswith the DeviceConfig configuration program for local processing or to
transfer them to themyDatanet server. In the event that your PC is not connected to the Internet when
reading out the data, you can initially synchronise themeasurement data and configurations of the
myDatalogEASY IoT with the DeviceConfig configuration program. As soon as your PC establishes a
connection to the Internet, for example when you return to the office, you can then complete the
synchronisations between the DeviceConfig andmyDatanet server (see "No connection to a device" on
page 123).

"Sync" tab when connected to the myDatalogEASY IoT

1 Checkbox to determine whether themeasurement data and configurations should also be synchronised
with the server when clicking on the Sync button.

Note: This checkbox is only displayed if your PC is already connected to the Internet.

2 Button to trigger synchronisation

122 Rev. 03

10.12.2 No connection to a device
This option can be used to complete the synchronisation retrospectively, if no connection to the Internet was
possible while reading out themeasurement data and configurations from themyDatalogEASY IoT .

"Sync" tab without connection to a device

1 Button to trigger synchronisation During this process, themeasurement data and configurations for all of
the devices that the DeviceConfig configuration program has saved locally are synchronised with the
myDatanet server.

Rev. 03 123

10.13 Recommended procedure

10.13.1 Synchronisation with the myDatanet server
To ensure amore comprehensivemanagement and display of the data, the DeviceConfig configuration
program also provides the option of forwarding themeasurement data and configurations to a central
myDatanet server. The next two chapters describe the possible scenarios when reading out the data from
themyDatalogEASY IoT .

More information on the functions of the server is provided in the server manual ("myDatanet Server Manual "
805002).

10.13.1.1 Internet connection available when reading out the data

The following process describes how you can not only synchronise the data with the DeviceConfig
configuration program but also with themyDatanet server. A site must already be assigned to the
myDatalogEASY IoT on themyDatanet server for this purpose. Detailed instructions are provided in chapter
"Creating the site" on page 139. Another prerequisite for this is that your PC is connected to the Internet while
reading out the data from themyDatalogEASY IoT . If this is not possible, follow the procedure described in
chapter "No Internet connection when reading out the data" on page 128.

1. Connect the USB BLE-Adapter (300685) to the USB interface of your PC.

2. Start the DeviceConfig configuration program.

DeviceConfig

3. Connect themyDatalogEASY IoT to the PC using the USB BLE-Adapter (300685) supplied (see
"Connecting a Device via Bluetooth Low Energy" on page 115).

Note: For the wireless (Bluetooth Low Energy) communication, the chargeable feature
"Activation code BLE (300968)" must be unlocked or the order option "Feature activationg BLE
(300972)" is required for the device.

124 Rev. 03

4. Additional tabs are displayed if the connection was established successfully. Now select the "Sync" tab.

myDatalogEASY IoT specific tab

5. Place a tick in the "Syncwith server" checkbox. This checkbox is only visible if your PC is currently
connected to the Internet.

"Sync" tab when connected to the myDatalogEASY IoT

1 Checkbox to determine whether themeasurement data and configurations should also be
synchronised with the server when clicking on the Sync button.

Note: This checkbox is only displayed if your PC is already connected to the Internet.

2 Button to trigger synchronisation

Rev. 03 125

6. Click on the button to trigger the synchronisation (see ""Sync" tab when connected to the
myDatalogEASY IoT " on page 125).

When you read out the data for the first time from amyDatalogEASY IoT , you can choose whether all
of the saved data or only the data from a certain date onwards are read out from the
myDatalogEASY IoT . During the following synchronisation processes, the DeviceConfig
configuration program always reads out the data from the last synchronisedmeasurement data record
onwards.

Selecting the time period for which the data should be read out (only during first synchronisation)

1 Read out all of the saved data

Note: Reading out all of the saved data can take several hours depending on the number
of savedmeasurement data records.

2 Only read out the data from the selected date onwards. The data is always read out from 00:00 am
of the selected day.

Important note: Following completion of the synchronisation it is no longer possible to
read out data before the selected date.

If the DeviceConfig configuration program determines that themyDatalogEASY IoT has been
assigned to a new or different site on themyDatanet server, you can decide what you would like to do
with the data that is already saved locally. The following screenshot provides an overview of the
available options that can be selected.

Important note: If a site already contains data, then only themeasurement data that is newer
than the current measurement data record for the site is synchronised.

126 Rev. 03

Selecting how to proceed with the locally saved data (only if the device has been assigned a new or different site)

1 The locally saved data is not assigned to the new site. Only themeasurement data that is read out
from the current point in time is assigned to the new site.

After clicking on "OK", the option to select fromwhich time period onwards the data should be read
out opens. Themeasurement data is read out from themyDatalogEASY IoT in accordance with
the selection and assigned to the new site.

2 The locally saved data is assigned to the new site from the selected point in time onwards.

3 All locally saved data is assigned to the new site.

7. Wait until the DeviceConfig configuration program indicates that the synchronisation process is
complete.

Synchronisation completed

Rev. 03 127

10.13.1.2 No Internet connection when reading out the data

Important note: Themethod described in the following requires that themyDatalogEASY IoT
myDatanet has already been assigned a site on themyDatanet server. Detailed instructions are
provided in chapter "Creating the site" on page 139.Additionally, a synchronisationmust already have
been completed during which the DeviceConfig configuration program simultaneously established a
connection to themyDatalogEASY IoT and themyDatanet server (see "Internet connection
available when reading out the data" on page 124).

This procedure is recommended, if an Internet connection cannot be established on the site while reading out
the data from themyDatalogEASY IoT . During this procedure, the data on the site is initially only
synchronised with the DeviceConfig configuration program. The data is then transferred to themyDatanet
server at a later date when your PC has re-established a connection to the Internet.

1. Connect the USB BLE-Adapter (300685) to the USB interface of your PC.

2. Start the DeviceConfig configuration program.

DeviceConfig

3. Connect themyDatalogEASY IoT to the PC using the USB BLE-Adapter (300685) supplied (see
"Connecting a Device via Bluetooth Low Energy" on page 115).

Note: For the wireless (Bluetooth Low Energy) communication, the chargeable feature
"Activation code BLE (300968)" must be unlocked or the order option "Feature activationg BLE
(300972)" is required for the device.

128 Rev. 03

4. Additional tabs are displayed if the connection was established successfully. Now select the "Sync" tab.

myDatalogEASY IoT specific tab

5. Click on the button to trigger synchronisation.

"Sync" tab when connected to the myDatalogEASY IoT although there is no connection to the myDatanet server

1 Button to trigger synchronisation

When you read out the data for the first time from amyDatalogEASY IoT , you can choose whether all
of the saved data or only the data up to a certain date are read out from themyDatalogEASY IoT .
During the following synchronisation processes, the DeviceConfig configuration program always reads
out the data from the last synchronisedmeasurement data record.

Rev. 03 129

Selecting the time period for which the data should be read out (only during first synchronisation)

1 Read out all of the saved data

Note: Reading out all of the saved data can take several hours depending on the number
of savedmeasurement data records.

2 Only read out the data from the selected date onwards. The data is always read out from 00:00 am
of the selected day.

Important note: Following completion of the synchronisation it is no longer possible to
read out data before the selected date.

6. Wait until the DeviceConfig configuration program indicates that the synchronisation process is
complete.

Synchronisation completed

7. Close the DeviceConfig configuration program.

8. Re-open the DeviceConfig configuration program as soon as your PC is connected to the Internet.

130 Rev. 03

9. Select the "Sync" tab and click on the button to trigger synchronisation.

"Sync" tab without connection to a device

1 Button to trigger synchronisation During this process, themeasurement data and configurations of
all of the devices that the DeviceConfig configuration program has saved locally are synchronised
with themyDatanet server.

10. Wait until the DeviceConfig configuration program indicates that the synchronisation process is
complete.

Synchronisation completed

Rev. 03 131

Chapter 11 "tbd" smartphone app

Chapter 11 "tbd" smartphone app

11.1 General
The "tbd" smartphone app is available for Android and iOS devices and can be downloaded free of charge
from "Google Play" (Android) or the Apple "App Store" (iOS).

Rev. 03 133

Chapter 12myDatanet server

Chapter 12 myDatanet server
Note: All of the screenshots show version 47.10 of themyDatanet server using the standard colour scheme.
Newer versions may includeminor changes to the appearance of the server.

12.1 Overview

Overview of the myDatanet server

1 Freely selectable logo 5 Opens the screen to input the global settings for
the server

2 Opens the window in which the notifications
created by the system and intended for the
currently logged-in user are summarized

6 Opens the rapidM2MPlayground

3 Displays themenu for adjusting the user settings
and for logging out the currently active user

7 Switches to the "Data exports" area to configure
the data export. This tab is only visible if at least
the licence for one export variant is available.

4 Tabs to switch between the individual server
areas

8 Opens the input screen to upload a XML file. This
tab is only visible if the licence for the XML import
is available.

12.1.1 Explanation of the symbols

Adds a new entry to the current list (reports, sites, users, etc.).

Deletes the adjacent element (report, site, user, etc.) from the list.

Calls up the input screen to edit the adjacent element (report, site, user, etc.).

Rev. 03 135

12.2 "Customer" area

Overview of the "Customer" area

1 Area where an image file can be displayed as a "Map" and/or the OpenStreetMapsmap can be
displayed

The sites can bemanually placed on the image file used as a "map".

In the OpenStreetMapsmap, the sites are only displayed onceGPS coordinates have been assigned to
the site.

2 Adds a new customer

136 Rev. 03

Chapter 12myDatanet server

3 List of tags that are assigned to at least one of the customers displayed in the list of customers. If the list
of customerswas limited by the search field or selection of a tag, this is taken into consideration when
creating the list of tags. A cross is added to the end of the list of tags as soon as the list of customers is
limited by the selection of a tag. Clicking on this crosswill reset the selection of all tags and the restriction
is cancelled.

By clicking on one of the tagswith the left mouse button only those customerswho have been assigned
the corresponding tag are displayed in the list of customers and the selected tag is highlighted in colour.

By clicking on one of the tagswith the right mouse button all of the customerswho have been assigned
the corresponding tag are hidden, the selected tag is highlighted in colour and the title of the tag is
crossed out.

Clicking the samemouse button again will remove the restriction.

4 Opens the input screen for configuring the customer

5 Deletes the customer

6 Comment that can be entered in the configuration of the customer

7 If a default report was defined, the default report is accessed by clicking on the name of the customer.
Otherwise the "Sites / Applications" area at customer level is opened by clicking on the name of the
customer (see ""Sites / Applications" area at customer level" on page 138 or "Reports" on page 139).

8 Search field to filter the customer list

9 Customer's address that can be entered via the input screen for configuring the customer

10 Symbol via which aOpenStreetMapsmap, on which the sites are displayed, can be loaded. (see "Map
view" on page 139)

11 Symbol via which an image file can be loaded on to the server as an "Overview map"

To remove the "Map" again, open the upload dialogue again and click on "Submit" without selecting an
image file beforehand.

Rev. 03 137

12.3 "Sites / Applications" area at customer level

Overview of the "Sites / Applications" area at customer level

1 Area where an image file can be displayed as a "Map" and/or the OpenStreetMapsmap can be displayed

The sites can bemanually placed on the image file used as a "map".

In the OpenStreetMapsmap, the sites are only displayed onceGPS coordinates have been assigned to
the site.

138 Rev. 03

Chapter 12myDatanet server

2 List of reports (see "Reports" on page 139)

3 List of sites/applications (see "Site" on page 100)

4 Symbol that represents a site on the "Map"

5 Symbol via which aOpenStreetMapsmap, on which the sites are displayed, can be loaded. (see "Map
view" on page 139)

6 Symbol via which an image file can be loaded on to the server as a "Map"

To remove the "Map" again, open the upload dialogue again and click on "Submit" without selecting an
image file beforehand.

12.3.1 Reports
The reports provide a variety of options to display graphs of the data on the web interface of themyDatanet
server or to download the data from themyDatanet server. Detailed instructions on creating and handling the
reports is provided inmyDatanet Server Manual (805002).

12.3.2 Map view
Themap view provides an overview of the geographic position of the sites. Detailed instructions on operating
and configuringmap view are provided inmyDatanet Server Manual (805002).

12.4 Recommended procedure

12.4.1 Creating the site
Note: Some of the fields mentioned in the following chapters may be hidden depending on the respective user
level. In this case, please contact the administrator of themyDatanet server.

Detailed instructions on creating a new site are provided inmyDatanet Server Manual (805002).

1. Log in via the web interface on themyDatanet server. You will receive the web address from your
responsible sales partner.

Login form of the myDatanet server

Rev. 03 139

2. Click on the "Customer" menu item of themyDatanet server to call up the list of available customers.
Select an existing customer or create a new customer.

Selecting the customer

1 Menu item to call up the list of customers 3 List of available customers

2 Creating a new customer

3. Click on the "Sites / Applications" menu item of themyDatanet server to call up the list of existing sites /
applications. Open the input window for creating a new site by clicking the "Add new site / application"
symbol, enter the serial number of your device in the appropriate field and then click the "Continue"
button.

Note: The serial number is on the type plate of the device (see "Device labelling" on page 30)

Creating the site

1 Menu item to call up the list of existing sites /
applications

4 Field for entering the serial number

2 "Add new site / application" symbol 5 "Continue" button

3 Input window for creating a new site

140 Rev. 03

Chapter 12myDatanet server

4. If necessary, change the suggested name of the site, select the desired site type or the desired
application from the drop-down list and then click the "Add" button.

Completing site creation

1 Name of the site (freely selectable) 3 "Add" button

2 Drop-down list of available applications,
templates and site types

Rev. 03 141

Chapter 13 rapidM2M Studio
Note: The web-based development environment rapidM2M Studio is being developed continuously which can
lead to slight changes to the appearance of the program compared to the screenshots used in this manual.

13.1 General
Access to the web-based development environment rapidM2MStudio is included in theMicrotronics Partner
Program, for which you can register free of charge at the following address:

https://partner.microtronics.com
It is a web-based IDE that is designed to support customerswith the creation of IoT applications for the
myDatalogEASY IoT . This covers the entire development process - from editing the source code, to testing
as part of the creation process to publishing the finished IoT application in the rapidM2MStore . All elements
whichmake up an IoT application are summarised in a single project. The elements are:

l Device logic: intelligence installed locally on themyDatalogEASY IoT
l Backend logic: intelligence installed on themyDatanet server
l Data descriptor: describes the structure of the data (measurement data, configurations, etc.), that is
exchanged betweenmyDatalogEASY IoT , myDatanet server and external systems (e.g. front ends
connected via REST API).

l Portal view: Simple front end that is supplied by themyDatanet server (e.g. for fast prototype
development and/or provision of administrative data)

In addition to the dashboard (see "Project dashboard" on page 145) for managing the projects, the rapidM2M
Studio consists of twomain interfaces:

l CODEbed: Editing and compiling the source codes (see "CODEbed" on page 146)
l TESTbed: Testing the IoT application in conjunction with a locally connected device and the
associated back end i.e. themyDatanet server (see "TESTbed" on page 147)

The sharing function implemented in the rapidM2MStudio enables developers from different disciplines
(firmware programmers, cloud developers, web designers, etc.) to create an IoT application together aswell
as to share projects and libraries with colleagues and the community. The integrated versionmanagement
also ensures controlled distribution of updates of an IoT application across the entire chain from the
rapidM2MStudio to the rapidM2MStore to the sites (that were created based on the IoT application) to the
myDatalogEASY IoT .

Rev. 03 143

https://partner.microtronics.com/

13.2 Prerequisites
Interfaces 1 xUSB

Operating system Windows 7

Windows 10 (recommended)

MacOS 10.12 or higher

Linux (Fedora 32, Ubuntu 20.04, Archlinux 2020.06.01)

Internet
connection

Required

Required disk
space

No installation required

Browser Google Chrome only

144 Rev. 03

13.3 Project dashboard

Project dashboard of the rapidM2M Studio

1 Search field to filter the list of projects

2 Button for switching sorting of the project list according to alphabetical order or last use

3 Opens the quick guide for the rapidM2MStudio

4 Button for displaying themenu that contains all relevant settings for the currently active user

5 Button for creating a new project

6 Buttons for filtering the list of the projects according to:

Recently used

All my projects

Projects shared byme

Projects shared with me

7 Tile that contains all important information about an IoT project

8 List of the "Collections"

All projects that are not assigned to another "Collection"

Favourite projects

Sample libraries provided byMicrotronics

Samples provided byMicrotronics

"Collection" created by user

9 Button for creating a new "Collection"

Rev. 03 145

13.4 CODEbed

CODEbed of the rapidM2M Studio

1 Navigation panel

2 Back to the project dashboard

3 Editor panel

4 Compiler results incl. warnings and errors

5 Memory usage

6 Context-sensitive help

7 Installs the current binaries of the project on the device and backend (i.e. on themyDatanet server) and
opens the TESTbed

146 Rev. 03

13.5 TESTbed

TESTbed of the rapidM2M Studio

1 Debug console

2 First opens the window for selecting and connecting the "Device under test" and then the window for
entering the access data for the "Backend under test"

3 Information on the "Device under test"

4 Watch panel

5 Information on the "Backend under test" (i.e. themyDatanet server)

6 Restarts the device logic installed on the device. The device logic is reloaded onto the device for this
purpose. However, any changesmade in the CODEbed are not taken into account here. This is only
done again by clicking the button "Install & Run" in the CODEbed.

7 Button for displaying/fading out additional panels

8 Button for deleting the console output

Rev. 03 147

Chapter 14 Device Logic

Chapter 14 Device Logic

14.1 General
The following chapter describes the functionality of the device logic. The programming language used is built
on Pawn, a scripting language similar to C that runs on embedded systems.

Additional, more detailed information is provided on the developer's website:
http://www.compuphase.com/pawn/pawn.htm.

There are several ways to create a device logic for themyDatalogEASY IoT :

l Direct entry in the "Device Logic" input field in the "Control" configuration section
l Upload of a previously created binary file (*.amx) to themyDatanet server
l Usage of the CODEbed (see "CODEbed" on page 146) of the web-based development environment
rapidM2MStudio

14.1.1 Direct entry of a device logic
The device logic is entered via the "Control" configuration section (see "Control" on page 101) of the input
screen for configuring the site. "Pawn"must be selected as the "Device Logic Type" so that the
myDatalogEASY IoT interprets the commands entered under "Device Logic" as a script.

14.1.2 Uploading a binary file
If the "Upload a compiled device logic" entry was selected via the "Device logic source" list selection in the
"Control" configuration section (see "Control" on page 101) of the input screen for configuring the site, a
binary file that was, for example, previously created via the web-based development environment rapidM2M
Studio (see "rapidM2MStudio " on page 143) can be uploaded to themyDatanet server. This is then loaded
into themyDatalogEASY IoT during the next connection.When using thismethod, "Pawn"must also be
selected as the "Device Logic Type" so that themyDatalogEASY IoT interprets the commands as a script.

14.1.3 Using the CODEbed of the web-based development environment rapidM2M
Studio
TheCODEbed is one of the twomain interfaces of the web-based development environment rapidM2M
Studio . The CODEbed serves to create and compile source codes for all elements (device logic, backend
logic, data descriptor and portal view) of an IoT application. The functional scope of the rapidM2MStudio also
includes transfer of the compiled device logic into themyDatalogEASY IoT via a USB connection and
copying of the data descriptor to the development site with which themyDatalogEASY IoT is linked.

Rev. 03 149

http://www.compuphase.com/pawn/pawn.htm

14.2 Device API

14.2.1 Constants
Return codes for general purposes

OK = 0,
ERROR = -1,
ERROR_PARAM = -2, // Parameter error
ERROR_UNKNOWN_HDL = -3, // Unknown handler, handle or resource error
ERROR_ALREADY_SUBSCRIBED = -4, // Already subscribed service or resource error
ERROR_NOT_SUBSCRIBED = -5, // Not subscribed service error
ERROR_FATAL = -6, // Fatal error
ERROR_BAD_HDL = -7, // Bad handle or resource error
ERROR_BAD_STATE = -8, // Bad state error
ERROR_PIN_KO = -9, // Bad PIN state error
ERROR_NO_MORE_HANDLES = -10, /* The service subscription maximum capacity is

reached */
ERROR_DONE = -11, /* The required iterative process is now

terminated */
ERROR_OVERFLOW = -12, /* The required operation has exceeded the

function capabilities */
ERROR_NOT_SUPPORTED = -13, /* An option, required by the function, is not

enabled on the CPU, the function is not
supported in this configuration */

ERROR_NO_MORE_TIMERS = -14, /* The function requires a timer subscription,
but no more timer resources are available */

ERROR_NO_MORE_SEMAPHORES = -15, /* The function requires a semaphore allocation,
but there are no more semaphore resources */

ERROR_SERVICE_LOCKED = -16, /* The function was called from a low or high
level interrupt handler (the function is
forbidden in this case) */

ERROR_MEM = -100,// error allocating memory
ERROR_SIM_STATE = -101,// SIM state error
ERROR_MODEM_DISABLED = -102,// Modem disabled
ERROR_SENSOR_DISABLED = -102,/* Sensor disabled

(Alias for ERROR_MODEM_DISABLED)*/
ERROR_FEATURE_LOCKED = -103,// feature locked
ERROR_TXITF = -104,/* tx interface (uplink) not available

(e.g. not opened, currenly closing) */

150 Rev. 03

Chapter 14 Device Logic

14.2.2 Timer, date & time

14.2.2.1 Arrays with symbolic indices

TrM2M_DateTime
Detailed breakdown of the date and time

// year Year specified relates to the 21st century, i.e. 14 refers to
// the year 2014
// month Month (1..12)
// day Day (1..31)
// hour Hours (0..23)
// minute Minutes (0..59)
// second Seconds (0..59)
// DoW Weekday (0 = Monday ... 6 = Sunday)
// timestamp Time stamp (seconds since 31.12.1999)
// timestamp256 Fraction of the next started sec. (resolutions 1/256 sec.)

#define TrM2M_DateTime[.year, .month, .day, .hour, .minute, .second, .DoW,
.timestamp, .timestamp256]

14.2.2.2 Constants

Time basis flags
Control flags for the rM2M_SetDateTime() function

RM2M_DATETIME_LOCALTIME = 0b00000001, // transferred time in local time

14.2.2.3 Functions

native rM2M_GetTime(&hour=0, &minute=0, &second=0, timestamp=0);
If no time stampwas transferred (timestamp=0), the current system time (in UTC) is converted to
hours/minutes/seconds. Alternatively, the transferred time stamp is converted to
hours/minutes/seconds.

Parameter Explanation
hour Variable to store the hours - OPTIONAL

minute Variable to store theminutes - OPTIONAL

second Variable to store the seconds - OPTIONAL

timestamp Time stamp that should be converted

= 0: The current system time (in UTC) is converted.
 > 0: The transferred time stamp is converted.
 (The time stampmust be specified in seconds since 31.12.1999.)

Explanation
Return value l timestamp = 0: Seconds since 31.12.1999 (current system time in UTC)

l timestamp > 0: The transferred time stamp is returned.

Rev. 03 151

native rM2M_GetDate(&year=0, &month=0, &day=0, timestamp=0);
If no time stampwas transferred (timestamp=0), the date (year, month, day) is determined for the
current system time (in UTC). Alternatively, the date (year, month, day) is determined for the
transferred time stamp.

Parameter Explanation
year Variable to store the year - OPTIONAL

Note: The year specified relates to the 21st century, i.e. the value 14 refers to
the year 2014.

month Variable to store themonth - OPTIONAL

day Variable to store the day - OPTIONAL

timestamp Time stamp for which the date should be determined

= 0: The date for the current system time (in UTC) is determined.
 > 0: The date for the transferred time stamp is determined.
 (The time stampmust be specified in seconds since 31.12.1999.)

Explanation
Return value l timestamp = 0: Seconds since 31.12.1999 (current system time in UTC)

l timestamp > 0: The transferred time stamp is returned.

native rM2M_GetDateTime(datetime[TrM2M_DateTime]);
Reads the current time (in UTC) and date from the system

Parameter Explanation
datetime Structure for storing a detailed breakdown of the date and time (see "TrM2M_

DateTime" in chapter "Arrayswith symbolic indices" on page 151)

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

152 Rev. 03

Chapter 14 Device Logic

native rM2M_SetDateTime(datetime[TrM2M_DateTime], flags=0);
Sets the system date and time to the values contained in the transferred structure

Parameter Explanation
datetime Structure that contains a detailed breakdown of the date and time (see "TrM2M_

DateTime" in chapter "Arrayswith symbolic indices" on page 151).

.timestamp = 0: The values contained in .year, .month, .day, .hour, .minute
and .second are used to set the date/time.

.timestamp != 0: The time stamp contained in .timestamp is used to set the
date/time.

flags Configuration flags for setting the system time - OPTIONAL

Bit0 (RM2M_DATETIME_LOCALTIME): must be set if the transferred
structure contains the time in local
time

Explanation
Return value l > 0, difference in seconds between the current time and time to be set

l 0, if the difference between the current time and time to be set is less than
5 sec.

l ERROR, if invalid parameters were transferred
l ERROR-1, if the time to be set ismore than one day ahead of the current
system time

native rM2M_GetTimezoneOffset();
Returns the difference (in seconds) between the system time (UTC) and local time configured for the
site on themyDatanet server. This can be used to determine the local time in the script by adding the
difference to the system time (UTC). The offset value is determined by themyDatanet server in
accordance with the set time zone (including summer/winter time) and is synchronised during every
connection to the device.

Example: Central European time (CET = UTC+1) is used for the site -> Offset = 3600 sec.

Explanation
Return value Offset value in seconds

native rM2M_DoW(timestamp);
Calculates the weekday from a given timestamp

Parameter Explanation
timestamp Timestamp of the day in question

Explanation
Return value Weekday, 0=Monday ... 6=Sunday

Rev. 03 153

native rM2M_TimerAdd(funcidx);
Generates a new 1s timer

Parameter Explanation
funcidx Index of the public function that should be called up following expiry of the timer

Type of function: public func();

Explanation
Return value l OK, if successful

l ERROR, If one of the following errors occurs:
l No valid indexwas transferred
l No further timers can be created (maximumnumber reached)
l In the event of an internal error

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_TimerRemove(funcidx);
Removes a 1s timer

Parameter Explanation
funcidx Index of the public function of the timer that should be removed

Type of function: public func();

Explanation
Return value l OK, if successful

l ERROR, if no valid indexwas transferred or in the event of an internal error
l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

154 Rev. 03

Chapter 14 Device Logic

native rM2M_TimerAddExt(funcidx, bool:cyclic, time);
Generates a new ms timer

Important note: The maximumnumber of simultaneously activems timers is 8.

Parameter Explanation
funcidx Index of the public function that should be called up following expiry of the timer

Type of function: public func();

cyclic Setting for the behaviour following expiry of the timer interval:

true: The timer must be restarted following expiry of the interval.
false: The timer is stopped following expiry of the interval.

time Timer interval in milliseconds (max. 60,000 ms)

Note: By setting the interval to 0ms, a timer can be generated for which the call
back function is called up immediately after the current code block (e.g. main
function) is executed. However, only single shot timers (i.e. the timer is stopped
upon expiry of an interval) may be initialised with an interval of 0ms.

Explanation
Return value l OK, if successful

l ERROR, if one of the following errors occurs
l No valid indexwas transferred.
l An interval of 0mswas specified and the timer should be restarted
automatically upon expiry of the timeout (i.e. cyclical 0ms timer).

l Internal error
l No additional timers can be created (maximumnumber reached).

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_TimerRemoveExt(funcidx);
Removes ams timer

Parameter Explanation
funcidx Index of the public function of the timer that should be removed

Type of function: public func();

Explanation
Return value l OK, if successful

l ERROR, if no valid indexwas transferred or in the event of an internal error
l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Rev. 03 155

14.2.3 Uplink

14.2.3.1 Arrays with symbolic indices

TrM2M_GSMInfo
Information regarding theGSMmodem, SIM chip and theGSMnetwork used during the last
connection

// cgmi Manufacturer identification of the modem
// cgmm Modem model information
// cgmr Modem revision information
// imei International mobile equipment identity of the modem
// imsi International mobile subscriber identity of the SIM chip that was
// used for the last connection
// Empty string, if no connection has been established yet
// iccid Integrated circuit card identifier of the SIM chip that was used
// for the last connection
// Empty string, if no connection has been established yet
// mcc MCC (Mobile Country Code) of the network used for the last/current
// connection
// 0, if no connection has been established yet
// mnc MNC (Mobile Network Code) of the network used for the last/current
// connection
// 0, if no connection has been established yet
// simstate Current SIM state (see "SIM state" in chapter
// "Constants" on page 157)
// act Radio access technology used for the last/current connection (see
// "Mobile radio AcT" in chapter "Constants" on page 157)
// lac LAC (location area code) of the network used for the last/current
// connection
// cid Cell identifier of the network used for the last/current
// connection
// 2G AcT:16-bit cell ID
// 3G AcT:28-bit UTRAN cells ID (16-bit cells ID + 12-bit RNC-ID)
// 4G AcT:28-bit E-UTRAN cells ID (8-bit sector ID + 20-bit
// eNodeB-ID)

#define TrM2M_GSMInfo[.cgmi{20}, .cgmm{20}, .cgmr{20}, .imei{16}, .imsi{16},
.iccid{21}, .mcc, .mnc, .simstate, .act, .lac, .cid]

TrM2M_TxItfStats
Statistical information on the uplink communication interface

// rtt Time [ms] it takes for the device to receive an answer from the
// server for a keep alive ping sent to the server (round trip
// time)1)

#define TrM2M_TxItfStats [.rtt]

1) can only be determined if the "Bidirectional alive ping" is activated on the server. The "Bidirectional alive ping" enables
the device and server to easily detect whether the connection is still established. The "Bidirectional alive ping" can be
activated globally for the complete server, for a specific customer or for a single site (see "myDatanet Server Manual "
805002).

156 Rev. 03

Chapter 14 Device Logic

14.2.3.2 Constants

SIM state
//Connection can be initiated via devic logic
RM2M_SIM_STATE_NONE = 0, //Initial state
RM2M_SIM_STATE_PRODUCTION = 1, //Newly produced device is in stock
RM2M_SIM_STATE_HOT = 2, //Valid contract

//Connection cannot be initiated via device logic
RM2M_SIM_STATE_COLD = 3, /*End of the contract or fair use policy

violated*/
RM2M_SIM_STATE_DISCARDED = 4, //Device has been decommissioned

Mobile radio AcT (access technology)
// Mobile radio AcT (access technology) as per 3GPP TS27.007
RM2M_TX_ACT_GSM = 0, // GSM
RM2M_TX_ACT_GSM_COMPACT, = 1, // GSM compact
RM2M_TX_ACT_UTRAN, = 2, // UTRAN
RM2M_TX_ACT_GSM_W_EGPRS, = 3, // GSM with EGPRS
RM2M_TX_ACT_UTRAN_W_HSDPA, = 4, // UTRAN with HSDPA
RM2M_TX_ACT_UTRAN_W_HSUPA, = 5, // UTRAN with HSUPA
RM2M_TX_ACT_UTRAN_W_HSDPA_HSUPA = 6, // UTRAN with HSDPA and HSUPA
RM2M_TX_ACT_E_UTRAN, = 7, // E-UTRAN

//rapidM2M specific
RM2M_TX_ACT_WIFI = 100, // WiFi
RM2M_TX_ACT_ETH = 101, // Ethernet

RM2M_TX_ACT_UNKNOWN = 255 // Unknown

Connection flags
Control flags for the rM2M_TxStart() function

RM2M_TX_POSUPDATE = 0b00000001, /* Update of the GSM position data
when establishing a connection */

RM2M_TX_REFRESH_CONFIG = 0b00000100, /* Additionally establishing a
connection to the maintenance
server */

RM2M_TX_SUPPRESS_POSUPDATE = 0b00001000, /* Suppress update of the GSM position
data when establishing a
connection 1) */

RM2M_TX_POSUPDATE_ONLY = 0b00010000, /* When establishing a connection, only
the GSM position data is updated.
Measurement data, configurations,
etc. are not synchronised. */

1) This suppresses the update of the GSM position data that is automatically executed by the firmware every 24h .

Rev. 03 157

Communication modes
Communicationmodes for the rM2M_TxSetMode() function

RM2M_TXMODE_TRIG = 0, // Interval
RM2M_TXMODE_WAKEUP = 1, // Interval & wakeup
RM2M_TXMODE_ONLINE = 2, // Online

Communication mode flags
Configuration flags for the rM2M_TxSetMode() function

RM2M_TXMODE_SUPPRESS_SYNC = 0b00000001, /* no auto. sync. with the server when
the connection type is changed */

Connection status
Return values of the rM2M_TxGetStatus() function

RM2M_TX_FAILED = 0b0000000001, // Connection establishment failed
RM2M_TX_ACTIVE = 0b0000000010, // GPRS connection established
RM2M_TX_STARTED = 0b0000000100, // Connection establishment started
RM2M_TX_RETRY = 0b0000001000, // Delay until retry
RM2M_TX_WAKEUPABLE = 0b0000010000, // Modem is logged into the GSM network
RM2M_TX_EXTSIM = 0b0000100000, // external SIM is used
RM2M_TX_DISABLED = 0b0001000000, // Modem was deactivated
RM2M_TX_WAKEUP = 0b0100000000, /* Connection establishment triggered

by wakeup SMS */
RM2M_TX_POSUPDATE_ACTIVE = 0b1000000000, // Positioning is running

Connection error codes
Error codes that are returned by the rM2M_TxGetStatus() function via the optional "errorcode"
parameter if the last connection attempt failed.

RM2M_TXERR_NONE = 0, // no error

// general errors
RM2M_TXERR_CONNECTION_TIMEOUT, // connection timed out
RM2M_TXERR_NEWDATA_TIMEOUT, // timeout during server sync in online mode
RM2M_TXERR_IRREGULAR_OFF, // irregularly closed connection
RM2M_TXERR_SERVER_NOT_AVAILABLE, // server not available
RM2M_TXERR_SERVER_COMMUNICATION, // error during communication with server

// general modem errors
RM2M_TXERR_MODEM = 10, // unspecified modem error
RM2M_TXERR_MODEM_TIMEOUT, // timeout modem communication
RM2M_TXERR_MODEM_HW_NOT_FOUND, // modem not found
RM2M_TXERR_MODEM_HW_UNKNOWN, // unknown modem
RM2M_TXERR_MODEM_INIT, // error during init
RM2M_TXERR_MODEM_UNS_RESTART, /* unsolicited restart (e.g. due to weak power

supply) */

// SIM related errors
RM2M_TXERR_MODEM_SIM = 30, // unspecified SIM related error
RM2M_TXERR_MODEM_SIM_NO_ATTEMPT, // only one remaining pin input attempt
RM2M_TXERR_MODEM_SIM_PIN_WRONG, // pin code is wrong

158 Rev. 03

Chapter 14 Device Logic

RM2M_TXERR_MODEM_SIM_NO_PIN, // pin code required but not available
RM2M_TXERR_MODEM_EXTSIM_DENIED, /* external SIM not allowed (APN and/or

feature key) */
RM2M_TXERR_MODEM_EXTSIM_MISSING, // external SIM not found
RM2M_TXERR_MODEM_SIM_OTHER, /* any other problem with SIM card (e.g.

internal SIM not found) */

// network-related error (GSM, GPRS, PDP, etc.)
RM2M_TXERR_MODEM_NETWORK = 50, // unspecified network related error
RM2M_TXERR_MODEM_GSM_BAND_SEL, // GSM not available (e.g. error with antenna)
RM2M_TXERR_MODEM_NETLOCK, /* error registering within network (e.g. not

allowed) */
RM2M_TXERR_MODEM_POSUPDATE, // error with GSM position update
RM2M_TXERR_MODEM_PDP_CTX, // error activating PDP context

// TCP related modem errors
RM2M_TXERR_MODEM_TCP = 70, /* TCP error (e.g. timeout, server not

available) */

// general WIFI errors
RM2M_TXERR_WIFI = 200, // unspecified WIFI error
RM2M_TXERR_WIFI_TIMEOUT, // timeout WIFI communication
RM2M_TXERR_WIFI_HW_NOT_FOUND, // WIFI device not found
RM2M_TXERR_WIFI_INIT, // error during init
RM2M_TXERR_WIFI_IO, // error IO communication

// network-related WIFI errors
RM2M_TXERR_WIFI_NETWORK = 220, // unspecified network related WIFI error
RM2M_TXERR_WIFI_NETWORK_TIMEOUT, // timeout accessing network
RM2M_TXERR_WIFI_AP_SCAN_TIMEOUT, /* timeout scanning for available access

points */
RM2M_TXERR_WIFI_AP_SCAN, /* error scanning access points (e.g.

currently not possible) */
RM2M_TXERR_WIFI_DHCP_TIMEOUT, /* timeout receiving IP address from DHCP

server */
RM2M_TXERR_WIFI_AP_SETTINGS, // access point settings not plausible
RM2M_TXERR_WIFI_AP_CONNECT, // error connecting to access point
RM2M_TXERR_WIFI_AP_NOT_FOUND, // access point not found during scan

// TCP related WIFI errors
RM2M_TXERR_WIFI_TCP = 240, // unspecified TCP related WIFI error
RM2M_TXERR_WIFI_TCP_OPEN_TO, // timeout opening TCP connection
RM2M_TXERR_WIFI_TCP_SEND_TO, // timeout sending data
RM2M_TXERR_WIFI_TCP_CONNECT, // error connecting to server
RM2M_TXERR_WIFI_TCP_FAILED, // other error concerning TCP connection

// general Ethernet errors
RM2M_TXERR_ETH = 300, // unspecified Ethernet error
RM2M_TXERR_ETH_TIMEOUT, // timeout Ethernet communication
RM2M_TXERR_ETH_INIT, // error during init
RM2M_TXERR_ETH_IO, // error IO communication
RM2M_TXERR_ETH_INIT_MAC_PHY, // error initialising MAC/PHY interface
RM2M_TXERR_ETH_ITF_UP, /* TCP/IP stack: error bringing itf up

(including dhcp) */

Rev. 03 159

// network-related Ethernet errors
RM2M_TXERR_ETH_NETWORK = 320, // unspecified network related Ethernet error
RM2M_TXERR_ETH_NETWORK_TIMEOUT, // timeout accessing network
RM2M_TXERR_ETH_DHCP_TIMEOUT, /* timeout receiving IP address from DHCP

server */

// TCP-related Ethernet errors
RM2M_TXERR_ETH_TCP = 340, // unspecified TCP related Ethernet error
RM2M_TXERR_ETH_TCP_OPEN_TIMEOUT, // timeout opening TCP connection
RM2M_TXERR_ETH_TCP_SEND_TIMEOUT, // timeout sending data
RM2M_TXERR_ETH_TCP_CONNECT, // error connecting to server
RM2M_TXERR_ETH_TCP_FAILED, // other error concerning TCP connection

Available uplink interfaces
Selectable uplink interfaces for the rM2M_TxSelectItf() function

RM2M_TXITF_NONE = 0, /* no uplink, communication with the server
not possible */

RM2M_TXITF_MODEM = 1, // Mobile network modem
RM2M_TXITF_WIFI = 2, // WiFi module
RM2M_TXITF_LAN = 3, // LAN interface

Signal strength measurement flags
Control flags for the rM2M_GSMGetRSSI() and rM2M_GetRSSI() functions.

RM2M_RSSI_EXTENDED_VALUE = 0b00000001, /* activates the extended value range
(-32768 .. 32767) for the return
values of the signal strength */

Configuration flags for the rM2M_CfgInit() function
RM2M_CFG_VOLATILE = 0b00000001, // volatile storage (RAM)

160 Rev. 03

Chapter 14 Device Logic

14.2.3.3 Callback functions

public func(const data[], len, timestamp, timestamp256);
Function to be provided by the device logic developer, that is called up, once a data record has been
read (using the function "rM2M_ReadData()") from the internal flashmemory.

Important note: The parameter "timestamp256" has only been added in later firmware
versions. The number of arguments transferred from the firmware to the callback function
should thus be checked via the function "numargs()".

Example:

#callback readdata_callback(const data{}, len, timestamp, timestamp256)
{

if(numargs() >= 4)
{

// parameter timestamp256 is available ...
}

}

Parameter Explanation
data Array that contains the data of the read data record

len Length of the data area of the read data record in bytes (max. 1024 Byte)

timestamp Time stamp of the data record (in UTC)

timestamp256 Fraction of the next started sec. (Resolution 1/256 sec.)

public func(cfg);
Function to be provided by the script developer, that is called up if one of the configurationmemory
blocks has changed.

Parameter Explanation
cfg Number of the changed configurationmemory block starting with 0 for the first

memory block

Rev. 03 161

14.2.3.4 Functions

native rM2M_TxStart(flags=0);
triggers a connection to the server with subsequent synchronisation of all memory areas (measurement
data, configuration, position data, device log, files,...) between the device and the server. Only those
memory areas are transmitted whose content has been changed. If the device is in "online" mode and
an active connection to the server is established then this function only triggers synchronisation. The
established connection is not disconnected beforehand and then re-established.

Important note: In "online" mode new measurement data that are stored in the internal flash
via the "rM2M_RecData()" function are transferred to the server immediately. Calling the
"rM2M_TxStart()" function is thus not necessary to transfer themeasurement data in this case.
Calling the function and the related synchronisation of all memory areas after generating every
singlemeasurement data record would lead to amuch higher volume of data. The same also
applies to transfer of the configurations. However it is recommended to call the "rM2M_
TxStart()" function occasionally (e.g. every 2h) even in "online" mode since not all memory
areas are automatically synchronised.

Parameter Explanation
flags Configuration flags for the connection establishment

Bit0 (RM2M_TX_POSUPDATE): If set, the GSMposition data is also
updated.

Bit2 (RM2M_TX_REFRESH_
CONFIG):

If set, a connection to themaintenance
server is also established

Bit3 (RM2M_TX_SUPPRESS_
POSUPDATE):

If set, this suppresses the update of the
GSMposition data that is automatically
executed by the firmware every 24h

Bit4 (RM2M_TX_POSUPDATE_
ONLY):

If set, only the GSMposition data is
updated when a connection is
established. Measurement data,
configurations etc. are not
synchronised.

Explanation
Return value l OK, if successful

l ERROR_SIM_STATE, if a connection is not possible due to the current
SIM state (see "SIM state" in chapter "Constants" on page 157)

l ERROR_MODEM_DISABLED, if the connection cannot be established
due to the supply voltage being too low

l ERROR_TXITF, if the connection cannot be established due to the TX
interface configuration (e.g. TX interface not open)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

162 Rev. 03

Chapter 14 Device Logic

native rM2M_TxSetMode(mode, flags=0);
Sets the connection type to be used. If the connection type is changed to "Online" or "Interval &
wakeup", this is immediately followed by a connection being established incl. a synchronisation with the
server, as long as this is not suppressed by the "RM2M_TXMODE_SUPPRESS_SYNC" flags being
set. The same also applies to changing the connection type from "Interval" to "Interval & wakeup".

Parameter Explanation
mode Connection type to be used:

RM2M_TXMODE_TRIG: The connection is established when the "rM2M_
TxStart()" function is called

RM2M_TXMODE_WAKEUP: The connection is established in the sameway as
in "Interval" mode when the "rM2M_TxStart()" function is called. Additionally, the
device can be initiated via the server to immediately establish a connection (see
"myDatanet Server Manual " 805002). For this purpose, the device immediately
logs into the GSMnetwork as soon as thismode has been set.

RM2M_TXMODE_ONLINE: The device does not disconnect the connection and
continuously transmits themeasurement data. However, every 7 days, the
connection is temporarily interrupted in order to verify the server assignment. The
connection is established as soon as thismode has been set. Calling the "rM2M_
TxStart()" function is not necessary.

flags Configuration flags for the communicationmode

Bit0: automatic sync. with the server when the connection type is changed
 0 = Execute synchronisation
 RM2M_TXMODE_SUPPRESS_SYNC = Suppress synchronisation

Explanation
Return value l OK, if successful

l ERROR_SIM_STATE, if themode is not possible due to the current SIM
state (see "SIM state" in chapter "Constants" on page 157)

l ERROR_MODEM_DISABLED, if the connection cannot be established
due to the supply voltage being too low

l ERROR_TXITF, if the connection cannot be established due to the TX
interface configuration (e.g. TX interface not open)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Rev. 03 163

Note: Additional explanation about the connection types

Connection type Energy consumption Data volumes Response time
online

Interval & wakeup

Interval

native rM2M_TxGetStatus(&errorcode=0);
Returns the current connection status

Parameter Explanation
errorcode Variable to store the error code that occurred during the last connection attempt

 RM2M_TXERR_NONE: Last connection establishment successful
> RM2M_TXERR_NONE: Last connection establishment failed.

Detailed breakdown of the error codes is
provided in "Connection error codes" in
chapter "Uplink" on page 156.

Explanation
Return value Bit0 (RM2M_TX_FAILED): set if the last GPRS connection

establishment failed
Bit1 (RM2M_TX_ACTIVE): set when aGPRS connection is

established
Bit2 (RM2M_TX_STARTED): set when a connection establishment has

been started
Bit3 (RM2M_TX_RETRY): set during the delay until the next

automatic retry in the event of connection
problems

Bit4 (RM2M_TX_WAKEUPABLE): set when themodem is logged into the
GSMnetwork (wakeup possible)

Bit5 (RM2M_TX_EXTSIM): set if the external SIM is used for the
connections

Bit6 (RM2M_TX_DISABLED): set if themodem has been deactivated
Bit8 (RM2M_TX_WAKEUP): Set when a connection establishment was

triggered upon receipt of a wakeup SMS
Bit9 (RM2M_TX_POSUPDATE_
ACTIVE):

set when positioning is running

164 Rev. 03

Chapter 14 Device Logic

native rM2M_TxSelectItf(itf);
Selects the communication interface to be used for the uplink

Parameter Explanation
itf Selection of the communication interface

RM2M_TXITF_NONE: No uplink, communication with the server not
possible

RM2M_TXITF_MODEM: Mobile networkmodem
RM2M_TXITF_WIFI: WiFi module
RM2M_TXITF_LAN: LAN interface

Explanation
Return value l OK, if successful

l ERROR, if the selected communication interface is not supported by the
device or another error occurs

native rM2M_TxItfGetStats(stats[TrM2M_TxItfStats], len=sizeof stats);
Returns the statistical information on the uplink communication interface

Parameter Explanation
stats Structure for storing the statistical information (see "TrM2M_TxItfStats" in chapter

"Arrayswith symbolic indices" on page 156)

len Size (in cells) of the structure to store the statistical information –OPTIONAL

Explanation
Return value l OK, if successful

native rM2M_SetTCPKeepAlive(time=0);
Sets the interval at which the keep alive pings are sent during onlinemode

Parameter Explanation
time Sets the time between the keep alive pings

0: Default setting saved in the firmware is used (15 min. 3 sec.)
< 241: in 1 sec. increments
241 .. 255: in 5 min. increments, whereby 3 sec. is subsequently added

e.g. 243: 3*5 min. + 3 sec. = 15 min. 3 sec.

Explanation
Return value l OK, if successful

Rev. 03 165

native rM2M_GSMGetRSSI(flags=0);
Returns the GSM/UMTS/LTE signal strength

Important note: Although this function will still be supported for the purpose of downward
compatibility, it should no longer be used for new projects. The "rM2M_GetRSSI()" function
should be used as an alternative.

Parameter Explanation
flags Configuration flags for the signal strengthmeasurement

Bit0 (RM2M_RSSI_EXTENDED_
VALUE):

If set, the extended value range for the
return of the signal strength is used

Explanation
Return value Signal strength in [dBm]

RM2M_RSSI_EXTENDED_VALUE not set:

l Maximum value range: -127 to 127
l Out of range at: -128

RM2M_RSSI_EXTENDED_VALUE set:

l Maximum value range: -32767 to 32767
l Out of range at: -32768

GSM values range from -113 to -51 dBm.
UMTS values range from -116 to -54 dBm.
LTE values range from -141 to -44 dBm.

native rM2M_GetRSSI(flags=0);
Returns the signal strength at the communication interface used for the uplink

Explanation
Return value Signal strength in [dBm]

RM2M_RSSI_EXTENDED_VALUE not set:

l Maximum value range: -127 to 127
l Out of range at: -128

RM2M_RSSI_EXTENDED_VALUE set:

l Maximum value range: -32767 to 32767
l Out of range at: -32768

GSM values range from -113 to -51 dBm.
UMTS values range from -116 to -54 dBm.
LTE values range from -141 to -44 dBm.
When using the LAN interface the return value is 0 dBm.

166 Rev. 03

Chapter 14 Device Logic

native rM2M_GSMGetInfo(info[TrM2M_GSMInfo], len=sizeof info);
Returns information on theGSMmodem, SIM chip and theGSMnetwork used during the last
connection

Parameter Explanation
info Structure for storing the information (see "TrM2M_GSMInfo" in chapter "Arrays

with symbolic indices" on page 156)

len Size (in cells) of the structure to store the information - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing the information

l ERROR if the address and/or length of the info structure are invalid
(outside the script datamemory)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_LiveData(const data{}, len);
Transmits a data record as live data to the server. Calling this function is only permissible if the device is
in "online" mode and an active connection to the server is established. Use the "rM2M_Pack", "rM2M_
SetPacked" or "rM2M_SetPackedB" functions to generate the data area.

Parameter Explanation
data Array that contains the live data to be transferred

Important note: The structure of the live datamust be identical to that of
themeasurement data saved in the internal flash using the "rM2M_
RecData()" function.

len Number of bytes to be transferred (max. 1024 Byte)

Explanation
Return value l OK, if successful

l ERROR, if an error occurs (e.g. the server does not support receipt of live
data.)

Rev. 03 167

native rM2M_RecData(timestamp, const data{}, len);
Saves a data record in the internal flashmemory. Use the "rM2M_Pack", "rM2M_SetPacked" or
"rM2M_SetPackedB" functions to generate the data area.

Parameter Explanation
timestamp Time stamp that should be used for the recording

= 0: The current system time is used as the time stamp.
 > 0: The transferred time stamp is used.
 (The time stampmust be specified in seconds since 31.12.1999)

data Array that contains the data to be saved

len Number of bytes to be saved (max. 1024 Byte)

Explanation
Return value l OK, if successful

l -2, if data storage is not currently possible as the internal memory is being
reorganised. The datamust be temporarily saved in the script and stored
again at a later date.

l ERROR, if one of the following errors occurs
l Memory area (data{}, len) is invalid.
l More than 10 calls during one script run.
l Number of bytes to be saved > 1024 Byte
l FLASH write process not successful
l The transfer parameter "timestamp" ismore than 5minutes in the
future

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_ReadData(recidx, funcidx);
Reads out a data record saved in the internal flash and then calls up the function for which the index
was transferred.

Parameter Explanation
recidx Index of the data record to be read (-1 = last/current data record, -2 = penultimate

data record,)

funcidx Index of the public function that should be called once the data record has been
read from the internal flashmemory.

Type of function: public func(const data[], len, timestamp, timestamp256);

Explanation
Return value l OK, if the read process has been started

l ERROR, if an error occurs

168 Rev. 03

Chapter 14 Device Logic

native rM2M_CfgInit(cfg, flags);
Sets the configuration for a configurationmemory block. Calling the function is only necessary if one of
the configuration flags should be set.

Parameter Explanation
cfg Number of the configurationmemory block starting with 0 for the first memory

block. The device comprises 10 independent memory blocks.

flags Configuration flags to be set/deleted

Bit0: Type of storage
 0 (default) = stored in FLASH in non-volatile manner
 RM2M_CFG_VOLATILE = saved in RAM in volatile manner

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Note: Additional explanation on the type of storage:

If Bit 0 was not set (default), the non-volatile storage of the configurationmemory block in the FLASH is
initiated when the "rM2M_CfgWrite" function is called up.

If Bit0 was set (Bit0 = RM2M_CFG_VOLATILE), the configurationmemory block is saved in the RAM in
a volatile manner when the "rM2M_CfgWrite" function is called. This option is recommended if the data
in the configurationmemory block changes frequently as this will reduce the number of flash write
cycles. The "rM2M_CfgFlush" functionmust be called up so that the configurationmemory block is
saved in a non-volatile manner in the FLASH.

Rev. 03 169

native rM2M_CfgWrite(cfg, pos, const data{}, size);
Saves the transferred data block at the specified position in a configurationmemory block. Note that the
configurationmemory block is either saved in the RAM in a volatile manner (Bit0 = RM2M_CFG_
VOLATILE) or in the FLASH in a non-volatile manner (Bit0 = 0, default) depending on the type of
storage selected via the "rM2M_CfgInit" function. The function is also passed which of the 10 available
memory blocks in the internal flashmemory should be used. Use the "rM2M_Pack", "rM2M_
SetPacked" or "rM2M_SetPackedB" functions to generate the data block that should be saved. The
time stamp is updated, so that the configurationmemory block is automatically synchronised with the
myDatanet server during the next connection.

Parameter Explanation
cfg Number of the configurationmemory block starting with 0 for the first memory

block. The device comprises 10 independent memory blocks.

pos Byte offset within the configurationmemory block to determine the position where
the data should be written.

data Array that contains the data that should be written in the configurationmemory
block

size Number of bytes that should be written in the configurationmemory block

Explanation
Return value l > 0: Current size of the configurationmemory block if successful

l ERROR_MEM, if enough temporarymemory (RAM) is not currently
available. (can occur if "RAM in a volatile manner" is selected as the type of
storage for several configurationmemory blocks)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_CfgFlush(cfg);
Saves the configurationmemory block for which the number was transferred in the FLASH in a non-
volatile manner. Calling the function is only necessary if "volatile in RAM (Bit0 = RM2M_CFG_
VOLATILE)" was selected as the type of storage for the relevant configurationmemory block via the
"rM2M_CfgInit" function.

Parameter Explanation
cfg Number of the configurationmemory block starting with 0 for the first memory

block. The device comprises 10 independent memory blocks.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

170 Rev. 03

Chapter 14 Device Logic

native rM2M_CfgRead(cfg, pos, data{}, size);
Reads a data block from the specified position in a configurationmemory block. The function is also
informedwhich of the 10 availablememory blocks in the internal flashmemory should be read. Use the
"rM2M_Pack", "rM2M_GetPacked" or "rM2M_GetPackedB" functions to unpack the read data.

Parameter Explanation
cfg Number of the configurationmemory block starting with 0 for the first memory

block. The device comprises 10 independent memory blocks.

pos Byte offset within the configurationmemory block to determine the position from
which the data should be read

data Array to store the data to be read

size Number of bytes that should be read from the configurationmemory block

Explanation
Return value l >0: Number of bytes actually read. Thismay be less or equal to the

requested number of bytes.
l ERROR_MEM, if enough temporarymemory (RAM) is not currently
available. (can occur if "RAM in a volatile manner" is selected as the type of
storage for several configurationmemory blocks)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native rM2M_CfgDelete(cfg);
Deletes all of the data of the transferred configurationmemory block

Parameter Explanation
cfg Number of the configurationmemory block starting with 0 for the first memory

block. The device comprises 10 independent memory blocks.

Explanation
Return value l OK, if successful

l ERROR_MEM, if enough temporarymemory (RAM) is not currently
available. (can occur if "RAM in a volatile manner" is selected as the type of
storage for several configurationmemory blocks)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Rev. 03 171

native rM2M_CfgOnChg(funcidx);
Specifies the function that should be called if one of the configurationmemory blocks has changed

Parameter Explanation
funcidx Index of the public function that should be called up if the configuration has

changed

Type of function: public func(cfg);

Explanation
Return value l OK, if successful

l ERROR, if no valid index of a public function was transferred
l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

14.2.4 System

14.2.4.1 Arrays with symbolic indices

TEasyV3_SysValue
Internal measurement values

// Temp Internal housing temperature in [0.1°C]
// RH Humidity in the housing in [0.1% rH]

#define TEasyV3_SysValue[.Temp, .RH]

14.2.4.2 Constants

Numbers of the universal inputs
UI_CHANNEL1 = 0, // Universal input 1
UI_CHANNEL2 = 1, // Universal input 2
UI_CHANNEL3 = 2, // Universal input 3
UI_CHANNEL4 = 3, // Universal input 4

//Number of universal inputs, with which the device is equipped
UI_NUM_CHANNELS = 4,

Numbers of the temperature sensor interfaces
TEMP_CHANNEL1 = 0, // PT100/1000 interface 1

//Number of temperature sensor interfaces, with which the device is equipped
TEMP_NUM_CHANNELS = 1,

172 Rev. 03

Chapter 14 Device Logic

Configuration of the external temperature measurement (PT100/1000)
Configuration options for the Temp_Init() function

TEMP_MODE_SINGLE_CONV = 0, // single conversion mode
TEMP_MODE_CONT_CONV = 1, // continuous conversion mode

14.2.4.3 Functions

native Temp_Init(temp, mode);
The temperature is onlymeasured once after this function is called if single conversionmode has been
activated (mode = TEMP_MODE_SINGLE_CONV). Themeasurement value can be read out by the
"Temp_GetValue" function until the PT100/1000 interface is closed by the "Temp_Close" function.
The temperature ismeasured at 320ms intervals after this function is called if continuous conversion
mode has been activated (mode = TEMP_MODE_CONT_CONV). The "Temp_GetValue" function
always supplies the last valid temperature value until the PT100/1000 interface is closed by the "Temp_
Close" function.

Parameter Explanation
temp Number of the PT100/1000 interface; is always 0 for themyDatalogEASY IoT

mode TEMP_MODE_SINGLE_
CONV :

The temperature is onlymeasured once after
the "Temp_Init" function is called.

TEMP_MODE_CONT_CONV : The temperature ismeasured continuously at
320ms intervals after the "Temp_Init" function
is called.

Explanation
Return value l Time in [ms] required tomeasure the temperature

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l ERROR, if an invalid parameter was transferred

Note: The energy consumption in continuous conversionmode is significantly higher than in single
conversionmode. The lowest level of energy consumption is only achieved once the PT100/1000
interface is closed via the "Temp_Close" function. This means that even if the PT100/1000 interface
was initialised in single conversionmode, it should be closed as soon as themeasurement value is read
out.

Rev. 03 173

native Temp_Close(temp);
Closes the PT100/1000 interface. This switches the temperaturemodule to themodewith the lowest
energy consumption.

Parameter Explanation
temp Number of the PT100/1000 interface; is always 0 on themyDatalogEASY IoT

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native Temp_GetValue(temp, &value);
Reads the temperaturemeasurement value for the specified PT100/1000 interface from the
temperaturemodule

Parameter Explanation
temp Number of the PT100/1000 interface; is always 0 on themyDatalogEASY IoT

value Variable to store the temperaturemeasurement value to be read out. The
temperaturemeasurement value is saved in the temperaturemodule in [0.1°C].

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native EasyV3_GetSysValues(values[TEasyV3_SysValue], len=sizeof values);
Reads the last valid values for the "Internal housing temperature" and "Air humidity in the housing" from
the system. The interval for determining these values is 10sec. and cannot be changed.

Parameter Explanation
values Structure for storing themeasurement values (see "TEasyV3_SysValue" in

chapter "Arrayswith symbolic indices" on page 172)

len Size (in cells) of the structure to store themeasurement values - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing themeasurement values

l ERROR, if one of the following errors occurs
l Address and/or length of the values structure is invalid (outside the
script datamemory).

l One of themeasurement values is invalid.

174 Rev. 03

Chapter 14 Device Logic

14.2.5 Encoding

14.2.5.1 Constants

Configuration flags for the rM2M_Pack() function
RM2M_PACK_GET = 0b00000001, // Value should be read (get packed)
RM2M_PACK_BE = 0b00000010, // Use "Big endian" format
RM2M_PACK_U8 = 0b00010000, // 8-bit unsigned
RM2M_PACK_S8 = 0b10010000, // 8-bit signed
RM2M_PACK_U16 = 0b00100000, // 16-bit unsigned
RM2M_PACK_S16 = 0b10100000, // 16-bit signed
RM2M_PACK_U32 = 0b01000000, // 32-bit unsigned
RM2M_PACK_S32 = 0b11000000, // 32-bit signed
RM2M_PACK_F32 = 0b01000000, // 32-bit float

Rev. 03 175

14.2.5.2 Functions

native rM2M_SetPacked(data{}, pos, &{Float,Fixed,_}:value, size=4, bool:bigendian=false);
Writes the transferred value to a specified position in an array

Important note: Although this function will still be supported for the purpose of downward
compatibility, it should no longer be used for new projects as the signed data typesmight lead to
problems. The „rM2M_Pack()" function should be used as an alternative.

Parameter Explanation
data Array that should be used as a data area for a data record or a configuration

pos Byte offset within the array to determine the position where the value should be
written

value Value that should be written in the array

size Number of bytes that should be used for the value to be written

bigendian Settings for the byte sequence that should be used when writing the value:

true: "Big endian" is used
false: "Little endian" is used

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Note: Additional explanation on the byte sequence:

In the following example, the whole number 439.041.101 is saved as a 32-bit integer value frommemory
address 10000.

Big endian Little endian
Addresses Hex Dez Binary Hex Dez Binary

10000 1A 26 00011010 4D 77 01001101

10001 2B 43 00101011 3C 60 00111100

10002 3C 60 00111100 2B 43 00101011

10003 4D 77 01001101 1A 26 00011010

176 Rev. 03

Chapter 14 Device Logic

native rM2M_SetPackedB(data{}, pos, const block{}, size);
Writes the transferred data block to the specified position in an array

Parameter Explanation
data Array that should be used as a data area for a data record or a configuration

pos Byte offset within the array to determine the position where the data block should
be written

block Data block that should be written in the array

size Number of bytes to be written from the data block to the array

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 177

native rM2M_GetPacked(const data{}, pos, &{Float,Fixed,_}:value, size=4, bool:bigendian=false);
Supplies the value that is located at the specified position in an array

Important note: Although this function will still be supported for the purpose of downward
compatibility, it should no longer be used for new projects as the signed data typesmight lead to
problems. The „rM2M_Pack()" function should be used as an alternative.

Parameter Explanation
data Array that should be used as a data area for a data record or a configuration

pos Byte offset within the array to determine the position fromwhich the data should
be read

value Variable to store the data to be read

size Number of bytes that should be read

bigendian Specifies how the packed datamust be interpreted:

true: The data is saved in "Big endian" format in the array.
false: The data is saved in "Little endian" format in the array.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Note: Additional explanation on the byte sequence:

In the following example, the whole number 439.041.101 is saved as a 32-bit integer value frommemory
address 10000.

Big endian Little endian
Addresses Hex Dez Binary Hex Dez Binary

10000 1A 26 00011010 4D 77 01001101

10001 2B 43 00101011 3C 60 00111100

10002 3C 60 00111100 2B 43 00101011

10003 4D 77 01001101 1A 26 00011010

178 Rev. 03

Chapter 14 Device Logic

native rM2M_GetPackedB(const data{}, pos, block{}, size);
Reads a data block that is located at the specified position in an array

Parameter Explanation
data Array that should be used as a data area for a data record or a configuration

pos Byte offset within the array to determine the position fromwhich the data should
be read

block Array to store the data to be read

size Number of bytes that should be read

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 179

native rM2M_Pack(const data{}, pos, &{Float,Fixed,_}:value, type);
Function to access packed data. If the Bit0 (RM2M_PACK_GET) of the "type" parameter was set, the
function returns the value that is located at the specified position in the array. Otherwise the function
writes the transferred value to the specified position in the array.

Parameter Explanation
data Arraywith the packed content

Set packed: Array to which the value should be written
Get packed: Array fromwhich the value should be read

pos Byte offset within the array

Set packed: Position to which the value should be written
Get packed: Position fromwhich the value should be read

value Set packed: Value that should be written in the array
Get packed: Variable to store the data to be read

type Configuration flags for the function

Bit0: Select "Set packed" / "Get packed"
 0 = value should be written
 1 = value should be read

Bit1: Byte order
 0 = "Little endian" format
 1 = "Big endian" format

Bit2...3
 reserved for extensions

Bit4...7: Data type
 1 = 8-bit unsigned
 2 = 16-bit unsigned
 4 = 32-bit unsigned / 32-bit float
 9 = 8-bit signed
 10 = 16-bit signed
 12 = 32-bit signed

Note: You can also use the predefined constants for this parameter (see
"Configuration flags for the rM2M_Pack() function" in chapter "Constants" on
page 175). The constants can also be combined using the "or" link.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

180 Rev. 03

Chapter 14 Device Logic

14.2.6 RS232, RS485

14.2.6.1 Constants

Configuration of the RS232 interface
Configuration flags for the RS232_Init() function

RS232_1_STOPBIT = 0b0000000000000001, // 1 stop bit
RS232_2_STOPBIT = 0b0000000000000010, // 2 stop bit
RS232_PARITY_NONE = 0b0000000000000000, // no parity
RS232_PARITY_ODD = 0b0000000000000100, // odd parity
RS232_PARITY_EVEN = 0b0000000000001000, // even parity
RS232_7_DATABIT = 0b0000000000000000, // 7 data bits
RS232_8_DATABIT = 0b0000000000010000, // 8 data bits
RS232_FLOW_NONE = 0b0000000000000000, // no flow control
RS232_FLOW_RTSCTS = 0b0000000001000000, // RTS/CTS hand shake
RS232_FULL_DUPLEX = 0b0000000000000000, // full duplex mode
RS232_HALF_DUPLEX = 0b0000000100000000, // half duplex mode
RS232_RTS_RS485_DIR = 0b0000001000000000, /* RTS is used for the RS485

direction control */

Configuration of the RS485 interface
Configuration flags for the RS485_Init() function

RS485_1_STOPBIT = 0b0000000000000001, // 1 stop bit
RS485_2_STOPBIT = 0b0000000000000010, // 2 stop bit
RS485_PARITY_NONE = 0b0000000000000000, // no parity
RS485_PARITY_ODD = 0b0000000000000100, // odd parity
RS485_PARITY_EVEN = 0b0000000000001000, // even parity
RS485_7_DATABIT = 0b0000000000000000, // 7 data bits
RS485_8_DATABIT = 0b0000000000010000, // 8 data bits
RS485_HALF_DUPLEX = 0b0000000000000000, // half duplex mode
RS485_FULL_DUPLEX = 0b0000000100000000, // full duplex mode
RS485_120_OHM_NONE = 0b0000000000000000, // no load resistance
RS485_120_OHM_ACT = 0b0000001000000000, // 120Ω load resistance

14.2.6.2 Callback functions

public func(const data{}, len);
Function to be provided by the script developer, that is called when characters are received via the
RS232 interface

Parameter Explanation
data Array that contains the received data

len Number of received bytes

Rev. 03 181

public func(const data{}, len);
Function to be provided by the script developer, that is called when characters are received via the
RS485 interface

Parameter Explanation
data Array that contains the received data

len Number of received bytes

14.2.6.3 Functions

native RS232_Init(rs232, baudrate, mode, funcidx);
Initialises the RS232 interface

Parameter Explanation
rs232 Number of the RS232 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS232_ITF1" for this
parameter.

baudrate Baud rate to be used. Observe the valid limits for the device being used (see
"Technical details about the RS232 interface" on page 86).

182 Rev. 03

Chapter 14 Device Logic

Parameter Explanation
mode Bit 0...1

 1 = 1 stop bit
 2 = 2 stop bits

Bit 2...3
 0 = no parity
 1 = uneven parity
 2 = even parity

Bit 4...5
 0 = 7 data bits
 1 = 8 data bits

Bit 6...7
 0 = no flow control
 1 = RTS/CTS handshake

Bit 8
 0 = full duplexmode
 1 = half duplexmode

Bit 9
 0 = no direction control
 1 = RTS pin is used to switch between sending and receiving1)
 RTS pin = 0: receiver active
 RTS pin = 1: sender active

Note: You can also use the predefined constants for this parameter (see
"Configuration of the RS232 interface" in the chapter "Constants" on page 181).
The constants can also be combined using the "or" conjunction.

funcidx Index of the public function for the RS232 character receipt

Type of function: public func(const data{}, len);

1)This configuration can be used to control the RS485 interface extension for myDatalogEASY IoT (301401).

Note:

l This mode cannot be used in combination with RTS/CTS handshake
l The half duplex mode (Bit 8 =1) is activated automatically

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Rev. 03 183

native RS232_Close(rs232);
Closes the RS232 interface

Parameter Explanation
rs232 Number of the RS232 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS232_ITF1" for this
parameter.

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native RS232_Write(rs232, const data{}, len);
Sends data via the specified RS232 interface

Parameter Explanation
rs232 Number of the RS232 interface; is always 0 on themyDatalogEASY IoT

Note: You can also use the predefined constant "RS232_ITF1" for this
parameter.

data Array that contains the data to be sent

len Number of bytes to be sent

Explanation
Return value l Number of processed bytes, if successful

Note: If the number of processed bytes deviates from the passed number
of bytes to be sent, the RS232_Write() functionmust be called again.
However, now only the data that could not be processed in the previous
function call needs to be passed here.

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

184 Rev. 03

Chapter 14 Device Logic

native RS232_Setbuf(rs232, rxbuf{}, rxlen, txbuf{}, txlen);
Provides the firmware with one buffer for sending and one for receiving characters via the RS232
interface from the RAMarea reserved for the Device Logic. When this function is called, the system
switches from the 256 byte buffers integrated in the firmware to the transferred buffers.

Important note: If necessary, this functionmay need to be called before the initialisation of the
RS232 interface via the "RS232_Init()" function.

Important note: The buffers "rxbuf" and "txbuf" must be valid during the entire use by the
firmware (i.e. theymust be defined as a global or static variable).

Parameter Explanation
rs232 Number of the RS232 interface; is always 0 on themyDatalogEASY IoT

Note: You can also use the predefined constant "RS232_ITF1" for this
parameter.

rxbuf Static byte array that should be used as a buffer to receive characters via the
RS232 interface

rxlen Size of the receiving buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

txbuf Static byte array that should be used as a buffer to send characters via the RS232
interface

txlen Size of the sending buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 185

native RS485_Init(rs485, baudrate, mode, funcidx);
Initialises the RS485 interface

Parameter Explanation
rs485 Number of the RS485 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS485_ITF1" for this
parameter.

baudrate Baud rate to be used. Observe the valid limits for the device being used (see
"Technical details about the RS485 interface" on page 85).

mode Bit 0...1
 1 = 1 stop bit
 2 = 2 stop bits

Bit 2...3
 0 = no parity
 1 = uneven parity
 2 = even parity

Bit 4...5
 0 = 7 data bits
 1 = 8 data bits

Bit 8
 0 = half duplexmode
 1 = full duplexmode

Bit 9
 0 = no load resistance
 1 = 120Ω load resistance

Note: You can also use the predefined constants for this parameter (see
"Configuration of the RS485 interface" in the chapter "Constants" on page 181).
The constants can also be combined using the "or" conjunction.

funcidx Index of the public function for the RS485 character receipt

Type of function: public func(const data{}, len);

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

186 Rev. 03

Chapter 14 Device Logic

native RS485_Close(rs485);
Closes the RS485 interface

Parameter Explanation
rs485 Number of the RS485 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS485_ITF1" for this
parameter.

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

native RS485_Write(rs485, const data{}, len);
Sends data via the specified RS485 interface

Parameter Explanation
rs485 Number of the RS485 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS485_ITF1" for this
parameter.

data Array that contains the data to be sent

len Number of bytes to be sent

Explanation
Return value l Number of processed bytes, if successful

Note: If the number of processed bytes deviates from the transferred
number of bytes to be sent, then the RS485_Write() functionmust be
called again. However, now only the data that could not be processed in
the previous function call needs to be transferred here.

l ERROR_FEATURE_LOCKED, if the specified interface on the device is
not unlocked

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Rev. 03 187

native RS485_Setbuf(rs485, rxbuf{}, rxlen, txbuf{}, txlen);
Provides the firmware with one buffer for sending and one for receiving characters via the RS485
interface from the RAMarea reserved for the Device Logic. When this function is called, the system
switches from the 256 byte buffers integrated in the firmware to the transferred buffers.

Important note: If necessary, this functionmay need to be called before the initialisation of the
RS485 interface via the "RS485_Init()" function.

Important note: The buffers "rxbuf" and "txbuf" must be valid during the entire use by the
firmware (i.e. theymust be defined as a global or static variable).

Parameter Explanation
rs485 Number of the RS485 interface; is always 0 for themyDatalogEASY IoT

Note: You can also use the predefined constant "RS485_ITF1" for this
parameter.

rxbuf Static byte array that should be used as a buffer to receive characters via the
R485 interface

rxlen Size of the receiving buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

txbuf Static byte array that should be used as a buffer to send characters via the RS485
interface

txlen Size of the sending buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

188 Rev. 03

Chapter 14 Device Logic

14.2.7 Bluetooth Low Energy

14.2.7.1 Arrays with symbolic indices

TBLE_Id
Information to identify the BLE module installed in the device. In contrast to the information that is
contained in the "TBLE_DevInfo" structure, this information can be called up at any time via the "BLE_
GetId()" function.

// FWVersion Version of the application installed on the BLE module
// The minor version is saved in byte 0, the major version is saved
// in byte 1 z.B. "01v003": Major version = 1, Minor version = 3

#define TBLE_Id[.FWVersion]

TBLE_Scan
Information regarding a BLE peripheral found during a (passive or active) scan process

// addr_type Type of BLE address
// 0: Public address
// 1: Random static address
// 2: Random private resolvable address
// 3: Random private non-resolvable address
// addr HW address
// rssi Signal strength [dBm]
// name Advertising name of the peripheral
// msd_len Number of bytes saved in "msd"
// msd Manufacturer-specific data

#define TBLE_Scan[.addr_type, .addr{6}, .rssi, .name{32+1}, .msd_len, .msd{32}]

TBLE_ScanFinished
Information on how a scan process (passive or active) was completed

// result specifies how the scan process was terminated
// OK: Scan process completed successfully
// ERROR: An error occurred
// ERROR-1: Timeout

#define TBLE_ScanFinished[.result]

TBLE_Notify
Content/data of a characteristic for which the notification was activated

// charHandle Handle of a characteristic
// len Number of received bytes
// data Array that contains the received data

#define TBLE_Notify[.charHandle, .len, .data{BLE_MAXLEN_NOTIFY}]

Rev. 03 189

TBLE_WriteResult
Information on how the write process on a characteristic was completed

// result specifies how the write process was terminated
// OK: Write process completed successfully
// ERROR: An error or timeout occurred
// charHandle Handle of the characteristic
// len Number of written bytes, if successful

#define TBLE_WriteResult[.result, .charHandle, .len]

TBLE_Read
Block of requested data from a characteristic

// charHandle Handle of a characteristic
// offset Offset of the received data block within the characteristic
// len Number of available bytes in the "data" array
// data Array that contains the received data

#define TBLE_Read[.charHandle, .offset, .len, .data{BLE_MAXLEN_READ}]

TBLE_ReadResult
Information on how the read process on a characteristic was completed

// result specifies how the read process was terminated
// OK: Read process completed successfully
// ERROR: An error or timeout occurred
// charHandle Handle of the characteristic

#define TBLE_ReadResult[.result, .charHandle]

TBLE_DevInfo
Information to identify the BLE module installed in the device. This information is provided once via the
callback function ("BLE_EVENT_DEVINFO" event) if the BLE module is initialised via BLE_Init().

// chipname Ascii, designation of the BLE module (e.g. NRF52)
// appname Ascii, designation of the application installed on the BLE module
// (e.g. ScannerApp)
// hwrev Ascii, HW revision (e.g. "01v001") (reserved for extensions)
// fwrev Ascii, FW version (z.B. "02v000") of the application installed on
// the BLE module
// addr HW address (all bytes are zero, if not available)

#define TBLE_DevInfo[.chipname{BLE_MAXLEN_CHIPNAME+1},
.appname{BLE_MAXLEN_APPNAME+1}, .hwrev{BLE_MAXLEN_HWREV+1},
.fwrev{BLE_MAXLEN_FWREV+1}, .addr{6}]

190 Rev. 03

Chapter 14 Device Logic

TBLE_Connect
Information regarding the status change of the connection with a BLE peripheral

// result Status of the connection
// 1: disconnected
// 0: connected
// <0: ERROR
// addr HW address of the BLE peripheral

#define TBLE_Connect[.result, .addr{6}]

TBLE_Error
Information regarding which error has occurred

// errorcode error code (see "BLE error codes" in chapter
// "Constants" on page 191)

#define TBLE_Error[.errorcode]

14.2.7.2 Constants

Maximum BLE connections
Maximumnumber of simultaneous BLE connections

BLE_MAX_CONNECTIONS = 5

Status of the BLE interface
Return values of the BLE_GetState() function

BLE_STATE_OFF = 0, // The BLE interface is switched off
BLE_STATE_INIT = 1, // Init sequence active, not ready (yet)
BLE_STATE_READY = 2, // Ready for the receipt of commands
BLE_STATE_BUSY = 3 // A command is currently being processed

Rev. 03 191

BLE events
Possible BLE events for function type "public func(event, connhandle, const data{}, len);" to be provided
by the script developer

BLE_EVENT_SCAN = 0, /* BLE Central: Scan information available (passive
scan) */

BLE_EVENT_SCAN_RSP = 1, /* BLE Central: Scan information available (active
scan) */

BLE_EVENT_NOTIFY = 2, // BLE Central: Notification received
BLE_EVENT_READ = 3, // BLE Central: Read response data available
BLE_EVENT_WRITE_RESULT = 4, // BLE Central: Write command is terminated
BLE_EVENT_READ_RESULT = 5, // BLE Central: Read command is terminated
BLE_EVENT_SCAN_FINISHED = 6, // BLE Central: The scan process is terminated
BLE_EVENT_DEVINFO = 7, /* Device information available (BLE module is

ready) */
BLE_EVENT_CONNECT = 8, /* BLE Central: Connected to/disconnected from

peripheral */
BLE_EVENT_ERROR = 9, // Internal error has occurred
BLE_EVENT_RAWCMD_STRING = 10,// RAW command: STRING/ASCII response available
BLE_EVENT_RAWCMD_OK = 11,/* RAW command: OK response available (command

terminated successfully) */
BLE_EVENT_RAWCMD_ERROR = 12,/* RAW command: ERROR response available (command

failed) */

Size of the notification data area
Maximum size (in bytes) of the data area of a notification

BLE_MAXLEN_NOTIFY = 256

Size of the data area of a read data block
Maximum size (in bytes) of the data area of a requested data block from a characteristic

BLE_MAXLEN_READ = 256

String lengths for the TBLE_DevInfo structure
#define BLE_MAXLEN_CHIPNAME (20) /* Max. length of the designation

for the BLE module */
#define BLE_MAXLEN_APPNAME (20) /* Max. length of the designation

for the application installed
on the BLE module */

#define BLE_MAXLEN_HWREV (20) /* Max. length for the string */
that specifies the HW revision

#define BLE_MAXLEN_FWREV (20) /* Max. length for the string
that specifies the FW
revision */

#define BLE_CHIPNAME_NRF52 "NRF52" /* Designation of the BLE module
installed in the device */

#define BLE_APPNAME_SCANNER_APP "ScannerApp" /* Designation of the application
installed on the BLE module */

192 Rev. 03

Chapter 14 Device Logic

BLE error codes
BLE_ERROR_UNKNOWN = 0, // Unspecified internal error
BLE_ERROR_INIT = 1, // Initialisation error
BLE_ERROR_IO = 2, // Internal IO error
BLE_ERROR_RESTART = 3, // Automatic restart detected/forced
BLE_ERROR_FORCED_DISC = 4, // Forced disconnect error

Rev. 03 193

14.2.7.3 Callback functions

public func(event, connhandle, const data{}, len);
Function to be provided by the script developer, that is called up if a BLE event has occurred

Parameter Explanation
iEvent BLE event that has occurred (see "BLE events" in chapter "Constants" on page

191"

connhandle Connection handle of a certain BLE peripheral

data

(1/2)

Array for which the content is dependent on the type of BLE event:

l BLE_EVENT_SCAN: Information on a BLE peripheral found during a
scan process (see "TBLE_Scan" structure)

This event is triggered if a BLE peripheral was found during scanning
(passive) (see BLE_Scan()).

l BLE_EVENT_SCAN_RSP: Information on a BLE peripheral found during
a scan process (see "TBLE_Scan" structure)

This event is triggered if a BLE peripheral was found during scanning
(active) (see BLE_Scan()).

l BLE_EVENT_NOTIFY: Content/data of a characteristic for which the
notification was activated (see "TBLE_Notify" structure)

This event is triggered if the software of the BLE peripheral changes the
content of a characteristic for which the notification was previously
activated.

l BLE_EVENT_READ: Block of required data from a characteristic (see
"TBLE_Read" structure)

This event is triggered if a block of the requested data was received (see
BLE_Read()).

l BLE_EVENT_WRITE_RESULT: Information on how the write process on
a characteristic was completed (see "TBLE_WriteResult" structure).

This event is triggered if the data was successfully written in the
characteristics of the BLE peripheral or an error occurred during this
process (see BLE_Write()).

l BLE_EVENT_READ_RESULT: Information on how the read process on
a characteristic was completed (see "TBLE_ReadResult" structure).

This event is triggered if all of the requested data was received or an error
occurred during this process (see BLE_Read()).

l BLE_EVENT_SCAN_FINISHED:" Information on how a scan process
was completed (see "TBLE_ScanFinished" structure)

This event is triggered when the scan process is completed (see BLE_
Scan()).

194 Rev. 03

Chapter 14 Device Logic

Parameter Explanation
data

(2/2)

l BLE_EVENT_DEVINFO: Information to identify the BLE module installed
in the device (see "TBLE_DevInfo" structure)

This event is triggered if the BLE module has been initialised via BLE_Init()
and is ready.

l BLE_EVENT_CONNECT: Information regarding the status change of the
connection with a BLE peripheral (see "TBLE_Connect" structure)

This event is triggered if the connection to a BLE peripheral could be
established/disconnected or if an error was triggered (see BLE_Connect()
and BLE_Disconnect()).

l BLE_EVENT_ERROR: Information regarding which error has occurred
(see "TBLE_Error" structure)

This event is triggered if an internal error occurs.

l BLE_EVENT_RAWCMD_STRING: String that was sent by the BLE
module as a response to the RAW command.

This event is triggered if a STRING/ASCII response is available for a RAW
command sent via BLE_SendRawCmd() to the BLE module

l BLE_EVENT_RAWCMD_OK: "OK"

This event is triggered if a RAW command sent via BLE_SendRawCmd()
to the BLE module has been terminated successfully.

l BLE_EVENT_RAWCMD_ERROR: "ERROR"

This event is triggered if a RAW command sent via BLE_SendRawCmd()
to the BLE module could not be processed or failed.

Note: The descriptions of the structuresmentioned above are detailed in
the chapter "Arrayswith symbolic indices" on page 189, while the
functions are detailed in chapter "Functions" on page 196

iDataLen Number of bytes in the array

Rev. 03 195

14.2.7.4 Functions

native BLE_GetId(id[TBLE_Id], len=sizeof id);
Returns the information to identify the BLE module installed in the device

Parameter Explanation
id Structure for storing the information to identify the BLE module installed in the

device (see "TBLE_Id" in chapter "Arrayswith symbolic indices" on page 189)

len Size (in cells) of the structure to store the information - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing the information

l ERROR, if one of the following errors occurs
l if the address and/or length of the ID structure are invalid (outside
the script datamemory)

l the BLE module is not ready

native BLE_Init(funcidx);
initialises the BLE interface and specifies the function that should be called up if a BLE event has
occurred

Note: The "BLE_EVENT_DEVINFO" event is triggered as soon as the BLE module is ready.

Parameter Explanation
funcidx Index of the public function that is called up if a BLE event has occurred

Type of function: public func(event, connhandle, const data{}, len);

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the BLE module is not unlocked on the
device

l ERROR, if an error occurs

native BLE_Close();
Deactivates the BLE interface. In doing so, the connection to the currently connected sensors is also
automatically disconnected.

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

196 Rev. 03

Chapter 14 Device Logic

native BLE_GetState();
Returns the current status of the BLE interface

Explanation
Return value Status of the BLE interface (see "Status of the BLE interface" in the chapter

"Constants" on page 191)

native BLE_Scan(time = 10, flags = 0);
starts the scan process according to the BLE peripherals

Note: The commandworks in non-blockingmode. The "BLE_EVENT_SCAN" event (passive
scan) or "BLE_EVENT_SCAN_RSP" event (active scan) is triggered every time a BLE
peripheral has been found. The "BLE_EVENT_SCAN_FINISHED" event is triggered when
the scan process is completed (i.e. the scan duration has expired). Once the scan process is
completed, the BLE_GetState() function returns "BLE_STATE_READY" instead of "BLE_
STATE_BUSY".

Parameter Explanation
time Scan duration [s]

flags Type of BLE scan

l 0 passive scan (most energy-efficient)
l 1 active scan (scan request)

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

Rev. 03 197

native BLE_Connect(addr{6}, itv = -1);
Establishes the connection to a BLE peripheral

Note: The commandworks in non-blockingmode. The "BLE_EVENT_CONNECT" event is
triggered if

l the connection to a BLE peripheral could be established,
l an existing connection was interrupted or
l an error occurred when establishing a connection.

Parameter Explanation
addr HW address of the BLE peripheral with which the connection should be

established.

itv BLE connection interval in [ms] (i.e. interval at which the data is exchanged)

Valid values: 8...1000 ms

Explanation
Return value l >= 0: Connection handle of a certain BLE peripheral

l ERROR-1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

native BLE_Disconnect(connhandle = 0);
Disconnects the connection to a BLE peripheral

Note: The BLE peripheral must already be connected

Note: The commandworks in non-blockingmode. The "BLE_EVENT_CONNECT" event is
triggered if

l the connection to a BLE peripheral could be disconnected,
l an error occurred when disconnecting the connection.

Parameter Explanation
connhandle Connection handle of a certain BLE peripheral

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

198 Rev. 03

Chapter 14 Device Logic

native BLE_GetConnState(connhandle = 0);
Returns the connection status for a certain BLE peripheral

Parameter Explanation
connhandle Connection handle of a certain BLE peripheral

Explanation
Return value l >0: Connected

l 0: Connection disconnected
l ERROR-1, if the BLE interface has not been initialised via BLE_Init()
l ERROR -2, if the command queue can no longer store anymore
commands

l ERROR
l Invalid handle
l BLEmodule not active

native BLE_Write(connhandle = 0, handle, const data{}, size);
Writes data in a certain characteristic of a BLE peripheral

Note: The BLE peripheral must already be connected

Note: The commandworks in non-blockingmode. The "BLE_EVENT_WRITE_RESULT"
event is triggered if the data was successfully written in the characteristic of the BLE peripheral
or an error occurred while the data was being written.

Parameter Explanation
connhandle Connection handle of a certain BLE peripheral

handle Handle of a certain characteristic (currently has to be determined externally)

data Array that contains the data to be written in the characteristic

size Number of bytes to be written

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

Rev. 03 199

native BLE_Read(connhandle = 0, handle);
Reads data from a certain characteristic of a BLE peripheral

Note: The BLE peripheral must already be connected

Note: The commandworks in non-blockingmode. The "BLE_EVENT_READ" event is
triggered every time a block of the requested data has been received. The "BLE_EVENT_
READ_RESULT" event is triggered if all of the requested data was received or an error
occurred while reading the data.

Parameter Explanation
connhandle Connection handle of a certain BLE peripheral

handle Handle of a certain characteristic (currently has to be determined externally)

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

native BLE_ChgConItv(connhandle = 0, conitv);
Changes the BLE connection interval (i.e. interval at which the data is exchanged)

Note: The BLE peripheral must already be connected

Parameter Explanation
connhandle Connection handle of a certain BLE peripheral

conitv BLE connection interval in [ms] (i.e. interval at which the data is exchanged)

Valid values: 8...1000 ms

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

200 Rev. 03

Chapter 14 Device Logic

native BLE_SetScanResponseData(const data{}, size);
is used to set themanufacturere-specific data which should be included in the response to an active
scan carried out by a BLE Central.

Parameter Explanation
data Arraywith the data which will be included as "manufacturer-specific data" in the

response to an active scan carried out by a BLE Central

size Size (in cells) of the transferred array

Explanation
Return value l OK, if successful

l ERROR -1, if the BLE interface has not been initialised via BLE_Init()
l ERROR-2, if the command queue can no longer store anymore
commands

l ERROR, if another error occurs

native BLE_SendRawCmd(cmd{}, cmdlen, timeout=0);
SendsRAW commands to the BLE module. A RAW command is forwarded directly to the BLE module
by the firmware. The developer of the device logic is responsible for developing the RAW commands
that are suitable for the BLE module (e.g. stop advertising on NRF5x scanner app:
"at+advertise=0\r\n").

Note: The commandworks in non-blockingmode. Depending on whether the BLE module
could process the RAW command, one of the following events is triggered:

l BLE_EVENT_RAWCMD_STRING: STRING/ASCII response available
l BLE_EVENT_RAWCMD_OK: Command completed successfully
l BLE_EVENT_RAWCMD_ERROR: Command failed

Parameter Explanation
cmd Array that contains the RAW commands to be sent

cmdlen Number of bytes that make up the RAW command

Note: If the BLE module expects ASCII commands (e.g. NRF5x scanner
app), then the final '\0' after the RAW commandmust be added to the
RAW command by the user.

timeout Response timeout

l 0: Internal default timeout is used
l >0: Response timeout in [ms]

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

Rev. 03 201

native BLE_Setbuf(rxbuf{}, rxlen, txbuf{}, txlen);
Provides the firmware with one buffer for sending and one for receiving characters via the BLE
interface from the RAMarea reserved for the device logic. When this function is called up, the system
switches from the 256 bytes buffers integrated in the firmware to the transferred buffers.

Important note: If required, this functionmust be called via the "BLE_Init()" function before the
BLE interface is initialised.

Important note: The buffers "rxbuf" and "txbuf" must be valid during the entire use by the
firmware (i.e. theymust be defined as a global or static variable).

Parameter Explanation
rxbuf Static byte array that should be used as a buffer to receive characters via the BLE

interface

rxlen Size of the receiving buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

txbuf Static byte array that should be used as a buffer to send characters via the BLE
interface

txlen Size of the sending buffer in byte

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

Explanation
Return value l OK, if successful

l ERROR_FEATURE_LOCKED, if the BLE module is not unlocked on the
device

l ERROR, if an error occurs
l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

202 Rev. 03

Chapter 14 Device Logic

14.2.8 Registry

14.2.8.1 Constants

Indices of the registration memory blocks
that can be accessed via the "rM2M_RegGetString()", "rM2M_RegGetValue()", "rM2M_
RegSetString()", "rM2M_RegSetValue()", "rM2M_RegDelValue()" and "rM2M_RegDelKey()"
functions. Detailed information on the registrationmemory blocks is provided in chapter "Registration
memory blocks" on page 43.

//System-specific data
RM2M_REG_SYS_OTP = 0, /* Written once as part of the production

process (readonly by device logic). */
RM2M_REG_SYS_FLASH = 1, /* Can be changed during operation (readonly by

device logic) */

//Application-specific data
RM2M_REG_APP_OTP = 2, /* Recommendation: Write only once as part of

the production process (readable and writeable
by device logic) */

RM2M_REG_APP_FLASH = 3, /* Can be changed during operation (readable and
writeable by device logic) */

//Application-specific, volatile data
RM2M_REG_APP_STATE = 4, /* Can be changed during operation (readable and

writeable by device logic). Requires
"rM2M_RegInit()" */

//Number of registration memory blocks
RM2M_REG_NUM_REGS = 5,

Error codes for the registration memory block access operations
RM2M_REG_ERROR_TOKENMEM = -101, // Not enough tokens were provided
RM2M_REG_ERROR_INVAL = -102, // Invalid character inside JSON string
RM2M_REG_ERROR_PART = -103, /* The string is not a full JSON packet, more

bytes expected */

RM2M_REG_ERROR_NOMEM = -200, // memory allocation failed
RM2M_REG_ERROR_NUMTOKENS = -201, /* not enough token available for this

object/array size */
RM2M_REG_ERROR_PAIR = -202, // found invalid pair (string : value)
RM2M_REG_ERROR_NOTOKENS = -203, // not enough tokens free for appending
RM2M_REG_ERROR_NOTFOUND = -204, // specified pair not found
RM2M_REG_ERROR_TYPE = -205, // token type mismatch
RM2M_REG_ERROR_PARAM = -206, // invalid parameters
RM2M_REG_ERROR_SIZE = -207, // size exceeds maximum allowed
RM2M_REG_ERROR_INVALID = -208, // JSON structure invalid
RM2M_REG_ERROR_ISNULL = -209, // value is null

Configuration flags for the rM2M_RegInit() function
RM2M_REG_VOLATILE = 0b00000001, // volatile storage (RAM)

Rev. 03 203

14.2.8.2 Callback functions

public func(reg);
Function to be provided by the device logic developer, that is called up if the registration has changed

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203) that has been changed

14.2.8.3 Functions

native rM2M_RegInit(reg, flags, data{}, len=sizeof data);
initialises one of the optional registrationmemory blocks stored in the RAM. Calling up the function is
only necessary for the registrationmemory blocks listed in the explanation of the "reg" parameter.
Detailed information on the registrationmemory blocks is provided in chapter "Registrationmemory
blocks" on page 43.

Parameter Explanation
reg Registrationmemory block index

The following registrationmemory blocks require an initialisation:

l RM2M_REG_APP_STATE: Application-specific, volatile data (e.g.
current device status)

flags Configuration flags to be set/deleted

Bit0: Type of storage
 0 = invalid, currently not supported
 RM2M_REG_VOLATILE = saved in RAM in volatile manner

data Array to store the registrationmemory block

len Size (in cells) of the transferred array to store the registrationmemory block (max.
1kB) - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

204 Rev. 03

Chapter 14 Device Logic

native rM2M_RegGetString(reg, const name[], string[], len=sizeof string);
Reads a character string from a registrationmemory block. Detailed information on the registration
memory blocks is provided in chapter "Registrationmemory blocks" on page 43.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

Note: RM2M_REG_APP_STATE requires "rM2M_RegInit ()" before.

name Name of the entry

string Array to store the string to be read

(Extended JSON string format, see "rM2M_RegSetString ()" for details)

len Size (in cells) of the transferred array to store the string to be read - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l RM2M_REG_ERROR_NOTFOUND, if the specified entry does not exist
l RM2M_REG_ERROR_ISNULL if the value of the specified entry is set to
"null"

l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

native rM2M_RegGetValue(reg, const name[], &{Float,Fixed,_}:value, tag=tagof value);
reads a value from a registrationmemory block. Detailed information on the registrationmemory blocks
is provided in chapter "Registrationmemory blocks" on page 43.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

Note: RM2M_REG_APP_STATE requires "rM2M_RegInit ()" before.

name Name of the entry

value Variable to store the value to be read

tag The integer and floating-point conversion are differentiated by the "tag" of the
variables. - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l RM2M_REG_ERROR_NOTFOUND, if the specified entry does not exist
l RM2M_REG_ERROR_ISNULL if the value of the specified entry is set to
"null"

l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

Rev. 03 205

native rM2M_RegSetString(reg, const name[], const string[]);
Writes a character string into a registrationmemory block. Detailed information on the registration
memory blocks is provided in chapter "Registrationmemory blocks" on page 43.

Important note: This function accepts even characters which are fobidden according to JSON
standard, such as "\t" , "\n" ,... Due to this, Javascript's JSON.parse() will fail with error
messages. Use JSON5 instead to decode such extended strings.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

Note: RM2M_REG_APP_STATE requires "rM2M_RegInit ()" before.

name Name of the entry

If an entry with this name already exists, the existing character string is replaced
by the transferred character string. Otherwise a new entry is created.

string Array that contains the string to be written

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

native rM2M_RegSetValue(reg, const name[], {Float,Fixed,_}:value, tag=tagof value);
Writes a value into a registrationmemory block. Detailed information on the registrationmemory blocks
is provided in chapter "Registrationmemory blocks" on page 43.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

Note: RM2M_REG_APP_STATE requires "rM2M_RegInit ()" before.

name Name of the entry

If an entry with this name already exists, the existing value is replaced by the
transferred value. Otherwise a new entry is created.

value Value to be written

tag The integer and floating-point conversion are differentiated by the "tag" of the
value. - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

206 Rev. 03

Chapter 14 Device Logic

native rM2M_RegDelValue(reg, const name[]);
Searches for an entry based on its name and sets the value of this entry (regardless of whether it is a
string or value) to "null". Detailed information on the registrationmemory blocks is provided in chapter
"Registrationmemory blocks" on page 43.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

name Name of the entry for which the value should be set to "null"

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

native rM2M_RegDelKey(reg, const name[]);
Searches for an entry based on its name and deletes the entry from the registrationmemory block.
Detailed information on the registrationmemory blocks is provided in chapter "Registrationmemory
blocks" on page 43.

Parameter Explanation
reg Index of the registrationmemory block (see "Indices of the registrationmemory

blocks" in chapter "Constants" on page 203)

name Name of the entry that should be deleted from the registrationmemory block

Explanation
Return value l OK, if successful

l ERROR, if an unspecified errors occurs
l < OK, if another error occurs (see "Error codes for the registrationmemory
block access operations" in chapter "Constants" on page 203)

Rev. 03 207

native rM2M_RegOnChg(funcidx);
Specifies the function that should be called up if one of the registrationmemory blocks has changed (i.e.
has been updated by the server). The callback is not triggered upon local (device-side) changes of a
registrationmemory.Detailed information on the registrationmemory blocks is provided in chapter
"Registrationmemory blocks" on page 43.

Parameter Explanation
funcidx Index of the public function that should be called up if the registration has changed

Type of function: public func(reg);

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

14.2.9 Position

14.2.9.1 Arrays with symbolic indices

TrM2M_GSMPos
Information about a GSM/UMTS/LTE cell in the receiving range

// mcc MCC (Mobile Country Code) of the GSM cell
// mnc MNC (Mobile Network Code) of the GSM cell
// lac LAC (Location Area Code) of the GSM cell
// cellid Cell ID of the GSM cell
// rssi Detected GSM level [dBm] for the GSM cell
// ta TA (Timing Advance) of the GSM cell (currently always 0)

#define TrM2M_GSMPos[.mcc, .mnc, .lac, .cellid, .rssi, .ta]

TrM2M_PosUpdateGSM
Information about a GSM cell in the receiving range

// type specifies the type of the entry (RM2M_POSUPDATE_TYPE_GSM)
// stamp Time when data was recorded
// mcc MCC (Mobile Country Code) of the GSM cell
// mnc MNC (Mobile Network Code) of the GSM cell
// lac LAC (Location Area Code) of the GSM cell
// cid Cell ID of the GSM cell
// rssi Detected GSM level [dBm] for the GSM cell
// ta TA (Timing Advance) of the GSM cell (currently always 0)

#define TrM2M_PosUpdateGSM [.type, .stamp, .mcc, .mnc, .lac, .cid, .rssi, .ta]

208 Rev. 03

Chapter 14 Device Logic

TrM2M_PosUpdateUMTS
Information about a UMTS cell in the receiving range

// type specifies the type of the entry (RM2M_POSUPDATE_TYPE_UMTS)
// stamp Time when data was recorded
// mcc MCC (Mobile Country Code) of the GSM cell
// mnc MNC (Mobile Network Code) of the GSM cell
// lac LAC (Location Area Code) of the GSM cell
// cid Cell ID of the GSM cell
// rscp Received Signal Code Power [dBm]
// pscr Primary Scrambling Code

#define TrM2M_PosUpdateUMTS [.type, .stamp, .mcc, .mnc, .lac, .cid, .rscp,
.pscr]

TrM2M_PosUpdateLTE
Information about an LTE cell in the receiving range

// type specifies the type of the entry (RM2M_POSUPDATE_TYPE_LTE)
// stamp Time when data was recorded
// mcc MCC (Mobile Country Code) of the GSM cell
// mnc MNC (Mobile Network Code) of the GSM cell
// lac LAC (Location Area Code) of the GSM cell
// cid Cell ID of the GSM cell
// rsrp Reference Signal Received Power [dBm]

#define TrM2M_PosUpdateLTE [.type, .stamp, .mcc, .mnc, .lac, .cid, .rsrp]

TNMEA_GGA
Information (position, height above sea level and accuracy) extracted from aGGA data record

// Lat geographical latitude in degrees (resolution: 0.000001°)
// -90,000,000 = South pole 90° S,
// 0 = Equator,
// +90,000,000 = North pole 90° N
//
// Long geographical longitude in degrees (resolution: 0.000001°)
// -180,000,000 =180° West, 0 =Zero meridian, +180,000,000 =180° East
//
// Alt Height above sea level in meters
// Qual NMEA Quality indicator(see "Constants" on page 210)
// SatUsed Number of satellites used for the positioning
// HDOP relative accuracy of the horizontal position [0,01]

#define TNMEA_GGA[.Lat, .Long, .Alt, .Qual, .SatUsed, .HDOP]

Rev. 03 209

14.2.9.2 Constants

List of the supported types of cell/network information entries
Possible types of cell/network information entries that can be read from the system via the function
"rM2M_EnumPosUpdate()"

RM2M_POSUPDATE_TYPE_ERR = 0, //invalid entry
RM2M_POSUPDATE_TYPE_GSM = 1, //Information about a GSM cell
RM2M_POSUPDATE_TYPE_UMTS = 2, //Information about a UMTS cell
RM2M_POSUPDATE_TYPE_LTE = 3, //Information about an LTE cell
RM2M_POSUPDATE_TYPE_WIFI = 4, //Information about a WiFi network

NMEA error codes
Error codes of the function rM2M_SetPosNMEA()

RM2M_NMEA_ERR_DATATYPE = -2, // Data type (e.g. $GGSA) not supported.
RM2M_NMEA_ERR_SENTENCE = -3, // Sentence invalid (e.g. checksum error)
RM2M_NMEA_ERR_LATITUDE = -4, // Geographical latitude invalid
RM2M_NMEA_ERR_LONGITUDE = -5, // Geographical longitude invalid
RM2M_NMEA_ERR_ALTITUDE = -6, // Altitude above sea level invalid
RM2M_NMEA_ERR_SAT_USED = -7, // Number of satellites used invalid.
RM2M_NMEA_ERR_QUAL = -8, // GPS quality indication not supported.

NMEA quality indicator
RM2M_NMEA_FIX_NOK = 0, // invalid/no fix
RM2M_NMEA_FIX_GPS = 1, // Non-differential GPS fix
RM2M_NMEA_FIX_DGPS = 2, // Differential GPS fix
RM2M_NMEA_FIX_PPS = 3, // Precise positioning service (PPS)
RM2M_NMEA_FIX_RTK = 4, // Real time kinematic (RTK)
RM2M_NMEA_FIX_FLOATRTK = 5, // Float real time kinematic
RM2M_NMEA_FIX_EST = 6, // Estimated fix (dead reckoning, coupled

// navigation)
RM2M_NMEA_FIX_MAN = 7, // Manual input mode
RM2M_NMEA_FIX_SIM = 8, // Simulation mode

List of supported GNSS device IDs
Designed to identify the source of the NMEA data record (in accordance with the "Talker ID" used with
the NMEA 0183 standard)

RM2M_NMEA_DEVICE_GP = 0x244750, // $GP (GPS)
RM2M_NMEA_DEVICE_GL = 0x24474C, // $GL (GLONASS)
RM2M_NMEA_DEVICE_GA = 0x244741, // $GA (GALILEO)
RM2M_NMEA_DEVICE_GN = 0x24474E, // $GN (GENERIC GNSS)

List of supported NMEA data records
RM2M_NMEA_RECORD_GGA = 0x474741, // GGA (global positioning system fix data)

210 Rev. 03

Chapter 14 Device Logic

14.2.9.3 Functions

native rM2M_SetPos(Lat, Long, Elev, Qual, SatUsed);
Saves theGPS position information in the device. A historical record is not maintained. Thismeans that
the current position information always overwrites the last known position. The information is
transmitted to themyDatanet server and can, for example, be read out via the API (see "API" on page
301).

Parameter Explanation
Lat geographical latitude in degrees (resolution: 0.000001°)

-90 000 000 = South pole 90° south
0 = Equator

+90 000 000 = North pole 90° north

Long geographical longitude in degrees (resolution: 0.000001°)

-180 000 000 = 180° west
0 = Zeromeridian (Greenwich)

+180 000 000 = 180° east

Elev Height above sea level in meters (Valid range: -999...+9999)

Qual Quality indicator (GPS quality indicator)

RM2M_NMEA_FIX_NOK: invalid/no fix
RM2M_NMEA_FIX_GPS: non-differential GPS fix
RM2M_NMEA_FIX_DGPS: differential GPS fix
RM2M_NMEA_FIX_PPS: Precise positioning service (PPS)
RM2M_NMEA_FIX_RTK: Real time kinematic (RTK)
RM2M_NMEA_FIX_FLOATRTK: Float real time kinematic
RM2M_NMEA_FIX_EST: Estimated fix (dead reckoning, coupled

navigation)
RM2M_NMEA_FIX_MAN: Manual input mode
RM2M_NMEA_FIX_SIM: Simulationmode

SatUsed Number of satellites used for the positioning (valid range: 0 ... 99)

Explanation
Return value l OK, if successful

l ERROR

Note: The parameters are checked against the specified range limits. The
function returns "ERROR" if the limits are not adhered to.

Rev. 03 211

native rM2M_DecodeNMEA(const sentence{}, data[], len=sizeof data);
Decodes a transferred NMEA data record

Parameter Explanation
sentence NMEA data record from aGPS receiver starting with the '$' character.

Important note: The stringsmust be terminated ('\0') immediately after
the checksum.

data Buffer (cell array) to store the decoded data

[0] : Contains the GNSS device ID (see "List of supported GNSS device
IDs" in chapter "Constants" on page 210)

[1] : Contains the type of decoded NMEA data record (see "List of
supported NMEA data records" in chapter "Constants" on page
210)

[2] ... [n] : Dependent on type of decoded NMEA data record

For a type "RM2M_NMEA_RECORD_GGA" data record, the
remaining structure is the same as the "TNMEA_GGA" structure.

[2]: .Lat
[3]: .Long
[4]: .Alt
[5]: .Qual
[6]: .SatUsed
[7]: .HDOP

len Size (in cells) of the buffer to record the decoded data –OPTIONAL

Explanation
Return value l positive value, if successful (number of filled array elements, i.e. cells)

l negative value, if an error has occurred (see "NMEA error codes" in
chapter "Constants" on page 210)

212 Rev. 03

Chapter 14 Device Logic

native rM2M_SetPosNMEA(const Sentence{});
Takes theGPS position information from the transferred NMEA data record and saves it in the device.
A historical record is not maintained. Thismeans that the current position information always overwrites
the last known position. The information is transmitted to themyDatanet server and can, for example,
be read out via the API (see "API" on page 301).

Parameter Explanation
Sentence NMEA data record from aGPS receiver starting with the '$' character. The

following data records are currently supported:

l $GPGGA - location specification (fix information)

Important note: The stringsmust be terminated ('\0') immediately after
the checksum.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "NMEA error codes" in chapter "Constants"
on page 210)

Rev. 03 213

native rM2M_GetPos(&Lat, &Long, &Elev, &Qual=0, &SatUsed=0);
Reads out the GPS position information saved to the device

Parameter Explanation
Lat Variable to store the geographical latitude in degrees

(resolution: 0.000001°)

-90 000 000 = South pole 90° south
0 = Equator

+90 000 000 = North pole 90° north

Long Variable to store the geographical longitude in degrees
(resolution: 0.000001°)

-180 000 000 = 180° west
0 = Zeromeridian (Greenwich)

+180 000 000 = 180° east

Elev Variable to store the height above sea level in metres
(valid range: -999...+9999)

Qual Variable to store the quality indicator (GPS quality indicator) – OPTIONAL

RM2M_NMEA_FIX_NOK: invalid/no fix
RM2M_NMEA_FIX_GPS: non-differential GPS fix
RM2M_NMEA_FIX_DGPS: differential GPS fix
RM2M_NMEA_FIX_PPS: Precise positioning service (PPS)
RM2M_NMEA_FIX_RTK: Real time kinematic (RTK)
RM2M_NMEA_FIX_FLOATRTK: Float real time kinematic
RM2M_NMEA_FIX_EST: Estimated fix (dead reckoning, coupled

navigation)
RM2M_NMEA_FIX_MAN: Manual input mode
RM2M_NMEA_FIX_SIM: Simulationmode

SatUsed Variable to store the number of satellites used for positioning –OPTIONAL

Explanation
Return value l OK if valid GPS position information is stored in the device

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

214 Rev. 03

Chapter 14 Device Logic

native rM2M_EnumPosUpdate(...);
lists the information saved in the device about the GSM/UMTS/LTE cells andWiFi networks in the
receiving range.With this function a variable list of parameters is used. The parameters to be passed
depend on the purpose. The following procedure is recommended:

1. Reading of the number of available cell/network information entries

new nEnum;

rM2M_EnumPosUpdate(nEnum);

2. Determination of the particular type of the cell/network information entries

new type;
new idxEnum = 0;

for(idxEnum=0 ; idxEnum < nEnum ; idxEnum++)
rM2M_EnumPosUpdate(idxEnum, type);

3. Reading of cell/network information entries based on the types determined previously (in the
following example only those that contain information about a GSM cell).

new sGSMPos[TrM2M_PosUpdateGSM];

if(type == RM2M_POSUPDATE_TYPE_GSM)
rM2M_EnumPosUpdate(idxEnum, sGSMPos, sizeof sGSMPos);

Parameter Explanation
nEnum Variable to store the number of available cell/network information entries

idxEnum Index of the cell/network information entry whose type should be determined or
that should be read by the system.

Either the "type" parameter or the two "buf" and "len" parameters are required in
addition depending on the desired action.

type Variable to store the type of a cell/network information entry (see "RM2M_
POSUPDATE_TYPE_xxx" in Chapter "Constants" on page 210)

buf Buffer to store a cell/network information entry

The structure of the buffer depends on the cell/network information entry to be
read (see "TrM2M_PosUpdatexxx" in Chapter "Arrayswith symbolic indices" on
page 208)

len Size (in cells) of the structure to store a cell/network information entry

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

Rev. 03 215

native rM2M_GetGSMPos(posidx, pos[TrM2M_GSMPos]=0);
Returns the number of GSM/UMTS/LTE cells for which valid information is saved to the device (posidx
< 0) or reads out the information saved to the device about a GSM/UMTS/LTE cell in the receiving
range (posidx >= 0)

Note: Use the "rM2M_EnumPosUpdate()" function in order to get information onWiFi
networks in the receiving range or more specific information on UMTS and/or LTE cells.

Parameter Explanation
posidx Selection of the information returned by the function

posidx < 0: Read the number of GSM/UMTS/LTE cells for which valid
information is saved to the device

posidx >=0: Number of the GSM/UMTS/LTE cell information block that should
be read

pos posidx < 0: Not required
posidx >=0: Structure for storing the information about a GSM/UMTS/LTE cell

in the receiving range (see "TrM2M_GSMPos" in chapter "Arrays
with symbolic indices" on page 208)

Explanation
Return value posidx < 0: Number of GSM/UMTS/LTE cells for which valid information is

saved to the device (max. 10)
posidx >=0: l OK, if the desired cell information block contains valid data

of a GSM cell
l OK+1, if the desired cell information block contains valid
data of a UMTS cell

l OK+2, if the desired cell information block contains valid
data of a LTE cell

l ERROR

216 Rev. 03

Chapter 14 Device Logic

14.2.10 Math

Definition Value Description
M_E 2.7182818284590452354 e

M_LOG2E 1.4426950408889634074 log2 e

M_LOG10E 0.43429448190325182765 log10 e

M_LN2 0.69314718055994530942 ln 2

M_LN10 2.30258509299404568402 ln 10

M_PI 3.14159265358979323846 π

M_PI_2 1.57079632679489661923 π/2

M_PI_4 0.78539816339744830962 π/4

M_1_PI 0.31830988618379067154 1/π

M_2_PI 0.63661977236758134308 2/π

M_2_SQRTPI 1.12837916709551257390 2/sqrt(π)

M_SQRT2 1.41421356237309504880 sqrt(2)

M_SQRT1_2 0.70710678118654752440 1/sqrt(2)

Helpful constants

native fround(Float:x);
Commercially rounds the transferred float

Parameter Explanation
x Float that should be rounded

Explanation
Return value Commercially rounded integral value

native min(value1, value2);
Supplies the smaller of the two transferred values

Parameter Explanation
value1 Two values of which the smaller one is to be determined

value2

Explanation
Return value The smaller of the two transferred values

Rev. 03 217

native max(value1, value2);
Supplies the larger of the two transferred values

Parameter Explanation
value1 Two values of which the larger one is to be determined

value1

Explanation
Return value The larger of the two transferred values

native clamp(value, min=cellmin, max=cellmax);
Checkswhether the transferred value is between "min" and "max"

Parameter Explanation
value Value that is to be checked

min Lower limit

max Upper limit

Explanation
Return value l "value" if the value is between "min" and "max"

l "min" is the value is less than "min"
l "max", if the value is greater than "max"

native swapchars(c);
Swaps the order of the bytes

Parameter Explanation
c Value for which the bytes should be swapped over

Explanation
Return value Value for which the bytes in parameter "c" are swapped over (the lowest byte

becomes the highest byte)

Themode of operation of the following functions corresponds to that of the standard ANSI-C implementation:

native Float:sin(Float:x);
Sine of x

native Float:cos(Float:x);
Cosine of x

native Float:tan(Float:x);
Tangent of x

218 Rev. 03

Chapter 14 Device Logic

native Float:asin(Float:x);
Arcsine(x) in the range [-π/2, π/2], x element of [-1, 1]

native Float:acos(Float:x);
Arccosine(x) in the range [0, π], x element of [-1, 1]

native Float:atan(Float:x);
Arctangent(x) in the range [-π/2, π/2]

native Float:atan2(Float:y, Float:x);
Arctangent(y/x) in the range [-π, π]

native Float:sinh(Float:x);
Hyperbolic sine of x

native Float:cosh(Float:x);
Hyperbolic cosine of x

native Float:tanh(Float:x);
Hyperbolic tangent of x

native Float:exp(Float:x);
Exponential function ex

native Float:log(Float:x);
Natural logarithm ln(x), x > 0

native Float:log10(Float:x);
Logarithm as the basis 10 log10(x), x > 0

native Float:pow(Float:x, Float:y);
xy. An argument error has occurred if x = 0 and y <= 0, or if x < 0 and y is not a whole number.

native Float:sqrt(Float:x);
Square root x, x >= 0

native Float:ceil(Float:x);
Smallest whole number that is not smaller than x

native Float:floor(Float:x);
Largest whole number that is not larger than x

native Float:fabs(Float:x);
Absolute value | x |

native Float:ldexp(Float:x, n);
x*2n

native Float:frexp(Float:x, &n);
Breaks down x into a normalisedmantissa in the range [1/2, 1] that is supplied as the result, and a
potency of 2 that is filed in n. If x is zero, both parts of the result are zero.

native Float:modf(Float:x, &Float:ip);
Breaks down x into an integral and residual part that both have the same prefix as x. The integral part is
filed in ip, while the residual part is the result.

native Float:fmod(Float:x, Float:y);
Residual floating point of x/y with the same prefix as x. The result is dependent on the implementation, if
y is zero.

native isnan(Float:x);
Returns a value that is not equal to zero, if x is not a number

Rev. 03 219

14.2.11 Char & String
Themode of operation of the following functions essentially corresponds to that of the standard ANSI-C
implementation:

native strlen(const string[]);
Returns the length of the string (without '\0')

Parameter Explanation
string Character string for which the length has to be determined

Explanation
Return value Number of characters without the final '\0'

220 Rev. 03

Chapter 14 Device Logic

native sprintf(dest[], maxlength=sizeof dest, const format[], {Float,Fixed,_}:...);
Saves the transferred format string in the array dest. Themode of operation of the functions
corresponds to that of the "snprintf" function of the standard ANSI-C implementation.

Note:

l If resulting string is longer than <dest>'s size, the very last character is set to terminating
zero.

l <dest> size is always rounded up to full multiple of 4.

Parameter Explanation
dest Array to store the formatted result

maxlength Maximumnumber of characters that the array dest can store

format The format character string to be used (C-style formatting codes)

%b : Number in binary radix
%c : Character
%d : Number in decimal radix
%f : Floating point number
%s : String
%x : Number in hexadecimal radix
... : s32 | f32 | astr - Additional arguments.

Depending on the format string, the functionmay expect a sequence of
additional arguments, each containing a value to be used to replace a
format specifier in the format string.

Explanation
Return value l -1 in the event of a fault

l Number of characters that would have been written if the array dest had
been long enough (without '\0').

The array dest is always assigned a final zero. The length of the array dest
cannot be exceeded.

native strcpy(dest[], const source[], maxlength=sizeof dest);
Copies the source character string to the array dest (including '\0').

Parameter Explanation
dest Array to store the character string that should be copied

source Character string that should be copied

maxlength Size (in cells) of the array to store the character string to be copied - OPTIONAL

Explanation
Return value Number of copied characters

Rev. 03 221

native strcat(dest[], const source[], maxlength=sizeof dest);
Adds the source character string to the dest character string (including '\0')

Important note: Both stringsmust be zero-terminated.

Parameter Explanation
dest Array to store the result. This array already contains one character string to which

the source character string should be added.

source Character string that should be added to the character string included in the array
dest

maxlength Size (in Cells) of the array to store the result - OPTIONAL

Explanation
Return value Number of added characters

native strcmp(const string1[], const string2[], length=cellmax);
Compares character string1 and string2

Important note: Both stringsmust be zero-terminated.

Parameter Explanation
string1 The two character strings that are to be compared

string2

length Themaximumnumber of characters that should be taken into consideration
during the comparison - OPTIONAL

Explanation
Return value l 1: string1 > string 2

l 0: both of the character strings are the same (at least the length that is
taken into account)

l -1: string1 < string 2

native strchr(const string[], char);
Searches for a character (first occurrence) in a character string

Parameter Explanation
string Character string that should be searched

char Character that the search is looking for

Explanation
Return value l -1, if the character that the search is looking for is not included in the

character string
l Array index of the character that the search is looking for (first character
occurring in the character string)

222 Rev. 03

Chapter 14 Device Logic

native strrchr(const string[], char);
Searches for a character (last occurrence) in a character string

Parameter Explanation
string Character string that should be searched

char Character that the search is looking for

Explanation
Return value l -1, if the character that the search is looking for is not included in the

character string
l Array index for the character that the search is looking for (last character
occurring in the character string)

native strspn(const string1[], const string2[]);
Searches for the position of the first character in string1 that isnotincluded in the character string of
permitted characters (string2)

Parameter Explanation
string1 Character string that should be searched

string2 Character string of permitted characters

Explanation
Return value l Length of string1 if no forbidden characters are found

l Position of the first character in the character string that should be
searched that is not included in the character string of permitted characters

native strcspn(const string1[], const string2[]);
Searches for the position of the first character in string1 that is also included in the character string of
permitted characters (string2)

Note: See similar function strpbrk () which has a slightly different result.

Parameter Explanation
string1 Character string that should be searched

string2 Character string of permitted characters

Explanation
Return value l Length of string1 if no permitted character has been found

l Position of the first character in the character string that should be
searched that is also included in the character string of permitted
characters

Rev. 03 223

native strpbrk(const string1[], const string2[]);
Searches the array index of the first character that is also included in the character string of permitted
characters

Note: See similar function strcspn () which has a slightly different result.

Parameter Explanation
string1 Character string that should be searched

string2 Character string of permitted characters

Explanation
Return value l -1: If no permitted character has been found

l >=0: Array index of the first character in the character string that should be
searched that is also included in the character string of permitted
characters

native strstr(const string1[], const string2[]);
Searches character string2 in character string1

Parameter Explanation
string1 Character string to search in

string2 Character string to search for

Explanation
Return value l -1: if character string2 that is being searched for is not included in string1

l >=0: Array indexwhere character string2 that is being searched for starts
in string1

224 Rev. 03

Chapter 14 Device Logic

native strtol(const string[], base);
Converts a character string into a value

Note:

l Function differs slightly from it's C variant.
l Parsing consumes asmany characters as possible, up to the first char not matching with
given base.

Parameter Explanation
string Character string to be converted

Important note: Strings > 128 bytes are not supported!
base Specifies the basis that must be used for the conversion

2-36: The specified basis is used
0: 8, 10 or 16 is used as the basis, depending on the
character string to be converted
 Basis 8: with a leading 0
 Basis 16: with 0x or 0X
Base 10: default

Explanation
Return value Value that corresponds to the character string

native Float: atof(const string[]);
Converts a character string into a float

Note:

l Decimal separator is always ".", no thousands separators supported.
l Parsing consumes asmany characters as possible, up to the first none-float char.

Parameter Explanation
string Character string to be converted

Important note: Strings > 128 bytes are not supported!

Explanation
Return value Float for which the numerical value corresponds to the character string

Rev. 03 225

native memcpy_native(dst{}, const dstofs, const src{}, const srcofs, const bytes, const dst_
cells=sizeof dst, const src_cells=sizeof src);

Copies bytes from one buffer to another one

Parameter Explanation
dst Target buffer to which the data should be copied

dstofs Position (byte offset) in the target buffer to which the data should be copied

src Source buffer fromwhich the data should be copied

srcofs Position (byte offset) within the source buffer fromwhich the data should be
copied

bytes Number of bytes that should be copied

dst_cells Size (in cells) of the target buffer - OPTIONAL

src_cells Size (in cells) of the source buffer - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if one of the following errors occurs
l If one of the two byte offsets or the number of bytes to be copied is
< 0

l If the byte offsets refer to a byte outside the relevant buffer
l If the reading was to exceed the source buffer (i.e. "Source byte
offset" + "Number of bytes" would refer to a byte outside the source
buffer)

l If the reading was to exceed the target buffer (i.e. "Target byte
offset" + "Number of bytes" would refer to a byte outside the target
buffer)

l If invalid buffers were transferred

native memset_native(dst{}, const dstofs, const srcval, const bytes, dstcells=sizeof dst);
Writes the desired value into the individual bytes of the transferred buffer

Parameter Explanation
dst Buffer in which the bytes should be set to the desired value

dstofs Position (byte offset) within the transferred buffer fromwhich the bytes should be
set to the desired value

srcval Value to which the individual bytes should be set

bytes Number of bytes that should be set to the desired value

dstcells Size (in cells) of the transferred buffer - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if one of the following errors occurs
l The byte offset is < 0
l The byte offset refers to a byte outside the buffer
l If an invalid buffer was transferred

226 Rev. 03

Chapter 14 Device Logic

native memcmp_native(const src1{}, const src1ofs, const src2{}, const src2ofs, bytes,
src1cells=sizeof src1, src2cells=sizeof src2);

Compares two buffers, byte for byte

Parameter Explanation
src1 Buffer #1

src1ofs Position (byte offset) within buffer #1 fromwhich the bytes should be compared

src2 Buffer #2

src2ofs Position (byte offset) within buffer #2 fromwhich the bytes should be compared

bytes Number of bytes that should be compared

src1cells Size (in cells) of buffer #1 - OPTIONAL

src2cells Size (in cells) of buffer #2 - OPTIONAL

Explanation
Return value l > 0: Buffer #1 > Buffer #2

l 0: the content of both of the buffers is the same (at least the bytes that are
taken into account)

l <0: Buffer #1 < Buffer #2

native tolower(c);
Converts a character into lower case

Parameter Explanation
c Character that should be converted to lower case

Explanation
Return value The lower case variant of the transferred character, if available, or the unchanged

character code of "c" if the letter "c" does not have a lower case equivalent.

native toupper(c);
Converts a character into upper case

Parameter Explanation
c Character that should be converted to upper case

Explanation
Return value The upper case variant of the transferred character, if available, or the

unchanged character code of "c" if the letter "c" does not have a upper case
equivalent.

Rev. 03 227

14.2.12 CRC & hash

14.2.12.1 Arrays with symbolic indices

TMD5_Ctx
Context structure for theMD5 calculation

// init After being set to "0", the context structure can be used to
// calculate a new hash. If a calculation should be implemented by
// calling up the "MD5" function repeatedly, there must not be
// write access to this element.
// tmp no write access permitted, for internal use

#define TMD5_Ctx[.init, .tmp[22]]

14.2.12.2 Functions

native CRC16(data{}, len, initial=0xFFFF);
Returns the calculatedmodbusCRC16 of the transferred data

Parameter Explanation
data Array that contains the data for which the CRC16 should be calculated

len Number of bytes that must be taken into consideration during the calculation

initial Initial value for calculating the CRC16 - OPTIONAL

Explanation
Return value Calculated CRC16

native CRC32(data{}, len, initial=0);
Returns the calculated Ethernet CRC32 of the transferred data

Parameter Explanation
data Array that contains the data for which the CRC32 should be calculated

len Number of bytes that must be taken into consideration during the calculation

initial Initial value for calculating the CRC32 - OPTIONAL

Explanation
Return value Calculated CRC32

228 Rev. 03

Chapter 14 Device Logic

native MD5(data{}, len, hash{16}, ctx[TMD5_Ctx] = [0]);
Calculates theMD5 hash for the transferred data. If the hash for a data block should be calculated by
calling up this function several times (e.g. when receiving data in blocks), then the same context
structuremust be transferred every time the function is called up. The context structuremust not be
changed between function call-ups. If the hash can be calculated by calling up the function once (e.g.
complete data block is already available), then it is not necessary to transfer its own context structure.

Parameter Explanation
data Array that contains the data for which theMD5 hash should be calculated

len Number of bytes that must be taken into consideration during the calculation

hash Array to store the calculated 128-bit hash value

ctx Context structure for theMD5 calculation –OPTIONAL (required only if
calculation usesmultiple calls to MD5())

Explanation
Return value ---

14.2.13 Various

14.2.13.1 Arrays with symbolic indices

TablePoint
Two-column reference point table, integer data type

// key Column that is searched
// value Column with the result values that need to be returned

#define TablePoint[.key, .value]

TablePointF
Two-column reference point table, float data type

// key Column that is searched
// value Column with the result values that need to be returned

#define TablePointF[Float:.key, Float:.value]

Rev. 03 229

TrM2M_Id
Information for identifying themodule/device

// string rapidM2M module identification (e.g. "rapidM2M EasyIoT HW1.1")
// module rapidM2M module type (e.g. "EasyIoT")
// hwmajor Hardware: Major version number
// hwminor Hardware: Minor version number
// sn Device serial number (binary) in BIG endian format
// E.g.: "010146AF251CED1C" --> "01" in sn{0}, "1C" in sn{7}
// fwmajor Firmware: Major version number
// fwminor Firmware: Minor version number
// ctx Site title (context)
// Empty string if no context available

#define TrM2M_Id[.string{50}, .module{10}, .hwmajor, .hwminor,
.sn{8}, .fwmajor, .fwminor, .ctx{50}]

TRTM_Data
Information regarding the runtimemeasurement

// runtime Determined runtime in [ms]
// instructions Number of executed instructions
// tmp For internal use, no write access permitted

#define TRTM_Data[.runtime, .instructions, .tmp[3]]

14.2.13.2 Constants

Error codes for the "CalcTable" and "CalcTableF" functions
const
{

TAB_ERR_FLOOR = -1, // searched value lower than the first table entry
TAB_ERR_CEIL = -2, // searched value higher than the last table entry

};

14.2.13.3 Functions

native getapilevel();
Issues the implemented API level of the script engine

Explanation
Return value Implemented API level of the script engine

l 1: Initial functionality
l 2: Added function "exists ()" to check availability of runtime function
l 3: Added function "loadmodule ()" to load a device logicmodule

230 Rev. 03

Chapter 14 Device Logic

native exists(const name[]);
checkswhether the required rapidM2MAPI function is supported by the device firmware

Important note: Use getapilevel () upfront to check if exists() is avilable with your firmware
version.

Parameter Explanation
name Name of the required rapidM2MAPI function

Explanation
Return value l true, if the function is available

l false, if the device firmware does not support the function

native loadmodule(mod{});
Loads a script module at the runtime. This enables the script engine to be extended by its own native
functions. The implementation of operations as a native functionmeans that processing speeds can be
increased significantly in comparison to the implementation in script. A script module can contain
several native functions. After calling up this function, the native functions contained in the script module
can be used in the sameway as the standard functions available in the script engine.

Parameter Explanation
mod Byte array that contains the script module to be loaded.

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

native rtm_start(measurement[TRTM_Data]);
Starts a runtimemeasurement

Important note: Execution of concurrent measurements is not allowed.

Parameter Explanation
measurement Structure for storing the information regarding a runtimemeasurement

Important note: This structuremust be persistent from calling up "rtm_
start()" to calling up "rtm_stop()".

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

Rev. 03 231

native rtm_stop(measurement[TRTM_Data]);
Stops the runtimemeasurement and calculates the time in [ms] since the "rtm_start()" function was
called up and the instructions executed since then. The determined values are written in the ".runtime"
and ".instructions" elements of the transferred structure to record the information regarding a runtime
measurement.

Parameter Explanation
measurement Structure for storing the information regarding a runtimemeasurement

Important note: This structuremust be persistent from calling up "rtm_
start()" to calling up "rtm_stop()".

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

232 Rev. 03

Chapter 14 Device Logic

native CalcTable(key, &value, const table[][TablePoint], size = sizeof table);
Searches for a certain value in the "key" column of the transferred reference point table and supplies
the relevant value from the "value" column in the table. If the searched value is between two reference
points, the returned value is interpolated linearly between the two adjacent values in the "value" column
(linear equation: y = k*x + d). Non-linear characteristic curves (e.g. connection between ADC value ->
temperature) can be reproduced with this function.

Parameter Explanation
key Value that is used for the search

value Includes the result of the calculation by the function

table The table that is searchedmust be a "TablePoint" type table.

size Number of rows in the table

Explanation
Return value l OK, if the relevant value was found

l TAB_ERR_FLOOR, if the searched value is lower than the first table entry.
"value" contains the first table entry.

l TAB_ERR_CEIL, if the searched value is higher than the last table entry.
"value" contains the last table entry.

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Note: Additional explanation on the "table" reference point table

The rows of the table can be displayed in an x/y coordinate system. The values in the "key" column are
displayed on the X axis and the associated values in the "value" column are displayed on the Y axis.

Display of the reference point table as an x/y coordinate system

native CalcTableF(Float:key, &Float:value, const table[][TablePointF], size = sizeof table);
The functionality is the same as that of the "CalcTable" function. The difference is that "Float" is the data
type for all elements of the "CalcTableF" function.

Rev. 03 233

native rM2M_GetId(id[TrM2M_Id], len=sizeof id);
Provides the information to identify themodule/device

Parameter Explanation
id Structure for storing the information to identify themodule/device (see "TrM2M_

Id" in chapter "Arrayswith symbolic indices" on page 229)

len Size (in cells) of the structure to store the information - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing the information

l ERROR if the address and/or length of the ID structure are invalid (outside
the script datamemory)

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

Note: The firmware of amodule/device detects if a device logic is being used for
which the function only has one transfer parameter (older include file is being
used) and for compatibility reasons therefore returns "OK" instead of the size of
the structure for storing the information.

native heapspace();
Supplies the freememory capacity to the heap

Explanation
Return value The freememory capacity to the heap. The stack and the heap have a joint

memory area, so that this value specifies the number of bytes that remain for the
stack or the heap.

native funcidx(const name[]);
Supplies the index of a public function. Used to register callbacks for the runtime environment.

Parameter Explanation
name Name of the public function

Explanation
Return value l -1, if there is no function with the transferred name

l Index of the public function

native numargs();
Returns the number of arguments transferred to a function. This is useful within functionswith a
variable list of arguments.

Explanation
Return value The number of arguments that have been transferred to a function.

234 Rev. 03

Chapter 14 Device Logic

native getarg(arg, index=0);
This function supplies an argument from a variable argument list. If the argument is an array, the "index"
specifies the index of the required array element.

Parameter Explanation
arg The sequence number of the argument. Use 0 for the first argument.

index Index if "arg" refers to an array

Explanation
Return value The value of the argument.

native setarg(arg, index=0, value);
Sets the value of the argument

Parameter Explanation
arg The sequence number of the argument. Use 0 for the first argument.

index Index if "arg" refers to an array

value Value to which the argument should be set

Explanation
Return value l true, if the value could be set

l false, if the argument or index are invalid

This function sets an argument in a variable argument list. If the argument is an
array, the "index" specifies the index of the required array element.

native rand();
Returns a random number from the "32-Bit signed Integer" value range. However, value "-1" (ERROR)
is reserved for returning an error.

Explanation
Return value l Random number from the "32-Bit signed Integer" value range

l ERROR if no random number generator is available

Rev. 03 235

native delay_us(us);
Blocking delay function. The execution of the device logic is stopped and the following code line is only
executed once the delay time has expired.

Parameter Explanation
us Delay time (1...10000 [µs]).

Explanation
Return value l OK, if successful

l ERROR, if an error occurs

14.2.14 Console
native print(const string[]);

Prints the specified string to the standard output

Parameter Explanation
string The character string to be issued. This can include escape sequences.

Explanation
Return value OK

236 Rev. 03

Chapter 14 Device Logic

native printf(const format[], {Float,Fixed,_}:...);
Prints the transferred format string to the standard output. Themode of operation of the functions
corresponds to that of the standard ANSI-C implementation.

Note:

l Charactersmay get lost if console output buffer overflows.
l Use sprintf () to write to a string buffer instead of the console.

Parameter Explanation
format[] The format character string to be used (C-style formatting codes)

%b : Number in binary radix
%c : Character
%d : Number in decimal radix
%f : Floating point number
%s : String
%x : Number in hexadecimal radix
... : s32 | f32 | astr - Additional arguments.

Depending on the format string, the functionmay expect a sequence of
additional arguments, each containing a value to be used to replace a
format specifier in the format string.

Explanation
Return value l Number of printed characters

l ERROR, if not successful

native setbuf(buf{}, size);
Provides the firmware with a buffer from the RAMarea reserved for the device logic that is used to
output strings via the "printf()" function. When this function is called up, the system switches from the
256 byte buffer integrated in the firmware to the transferred buffer.

Important note: The buffer must be valid during the entire use by the firmware (i.e. it must be
defined as a global or static variable).

Parameter Explanation
buf Static byte array that should be used as a buffer to output strings

size Size of the buffer in bytes

Note: If the function is called up again and the size is set to "0" during the
process, then the system switches back to the integrated buffer (256 bytes). The
transferred static byte array can then be used by the device logic again.

Explanation
Return value l OK, if successful

l ERROR, if not successful

Rev. 03 237

14.2.15 SMS
Important note: If the device is in "online" mode no SMS can be processed.

14.2.15.1 Callback functions

public func(const SmsTel[], const SmsText[]);
Function to be provided by the device logic developer, that is called up if an SMS is received

Parameter Explanation
SmsTel String that contains the telephone number of the sender of the SMS

SmsText String that contains the content of the SMS

14.2.15.2 Functions

native rM2M_SmsInit(funcidx, config);
Initialises SMS receipt

Parameter Explanation
funcidx Index of the public function that should be called up if an SMS has been received

Type of function: public func(const SmsTel[], const SmsText[]);

Important note: If an SMS that is longer than 160 characters is
received, it is discarded immediately. The specified public function is not
called up.

config Reserved for extensions

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native rM2M_SmsClose();
Deactivates SMS receipt

Explanation
Return value OK

238 Rev. 03

Chapter 14 Device Logic

14.2.16 External SIM

14.2.16.1 Arrays with symbolic indices

TrM2M_SIMCfg
Configuration data of an external SIM card

// pin Pin code for the external SIM card
// apn Access point (APN) that should be used for the connection
// username Username to dial up via the access point
// password Password to dial up via the access point

#define TrM2M_SIMCfg[.pin{8}, .apn{40}, .username{40}, .password{40}]

14.2.16.2 Functions

native rM2M_SetExtSimCfg(cfg[TrM2M_SIMCfg], len=sizeof cfg);
Saves the transferred configuration data for the external SIM card in the device. Setting the
configuration data switches to the external SIM card. To switch back to the internal SIM chip, a
structure, in which all of the fields are set to 0, must be transferred when setting the configuration data.

Note: The chargeable feature "Activation code VPN SIM (300539)" must be released to be
able to use the external SIM card.

Parameter Explanation
cfg Structure that contains the configuration data for the external SIM card (see

"TrM2M_SIMCfg" in chapter "Arrayswith symbolic indices" on page 239)

len Size (in cells) of the structure that contains the configuration data - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing the configuration data

l ERROR if the address and/or length of the info structure are invalid
(outside the script datamemory)

native rM2M_GetExtSimCfg(cfg[TrM2M_SIMCfg]=0, len=sizeof cfg);
Provides the current configuration data stored for the external SIM card

Parameter Explanation
cfg Structure to store the configuration data saved for the external SIM card (see

"TrM2M_SIMCfg" in chapter "Arrayswith symbolic indices" on page 239)

len Size (in cells) of the structure to store the saved configuration data - OPTIONAL

Explanation
Return value l Used size (in cells) of the structure for storing the configuration data

l ERROR, if one of the following errors occurs
l Address and/or length of the cfg structure is invalid (outside the
script datamemory)

l No valid configuration data available for the external SIM card

Rev. 03 239

14.2.17 File transfer

14.2.17.1 Arrays with symbolic indices

TFT_Info
Properties of a file entry

// name Name of the file
// stamp Time stamp of the file (seconds since 31.12.1999)
// stamp256 Fraction of the next started sec. (resolution 1/256 sec.)
// size File size in byte
// crc Ethernet CRC32 of the file
// flags File flags (see "File flags" in
// chapter "Constants" on page 240)
#define TFT_Info[.name{256}, .stamp, .stamp256, .size, .crc, .flags]

14.2.17.2 Constants

File flags
FT_FLAG_READ = 0x0001, // File can be read by the server.
FT_FLAG_WRITE = 0x0002, // File can be written by the server.
FT_FLAG_NODE = 0x0004 /* file nodes (required to entitle the server to

create a new file) */
FT_FLAG_SYSTEM = 0x0008 // System file (cannot be used by the device logic)

File transfer command
FT_CMD_NONE = 0,
FT_CMD_UNLOCK = 1, /* File transfer session terminated. The server

releases the block again. */
FT_CMD_LIST = 2, // The server requests the properties of a file
FT_CMD_READ = 3, // The server requests a part of a file.
FT_CMD_STORE = 4, // The server requests a file to be written.
FT_CMD_WRITE = 5, /* The server provides a block to be written in

a file. */
FT_CMD_DELETE = 6, // The server requests a file to be deleted.
FT_CMD_ENUM = 7, /* The server requests the properties of a file

that are part of a file node */
FT_CMD_RETR = 8, /* The server requests a file that is part of a

file node */

14.2.17.3 Callback functions

public func(id, cmd, const data{}, len, ofs);
Function to be provided by the device logic developer, that is called up when a file transfer command is
received. The callback functionmust be able to handle all file transfer commands (see "File transfer
commands" in chapter "Constants" on page 240).

240 Rev. 03

Chapter 14 Device Logic

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

cmd File transfer command that was received from the system and that has to be
processed by the callback function

data This parameter is only relevant when the following file transfer commands are
received:

l FT_CMD_STORE: Array that contains the properties of the file that should
be newly created. Structure:

Offset Bytes Explanation
0 4 Time stamp of the file

8 4 File size in byte

12 4 Ethernet CRC32 of the file

16 2 File flags

18 256 File name

l FT_CMD_WRITE: Array that contains the data received from the
myDatanet server.

l FT_CMD_RETR: Name of a file (ASCII) that is part of a file node and was
requested by the server

len This parameter is only relevant when the following file transfer commands are
received:

l FT_CMD_READ: Number of bytes requested by themyDatanet server
(max. 4kB)

l FT_CMD_STORE: Size of the file property block received from the
myDatanet server

l FT_CMD_WRITE: Number of bytes received from themyDatanet server
l FT_CMD_RETR: Length of the file name (number of characters excluding
the final '\0')

ofs This parameter is only relevant when the following file transfer commands are
received:

l FT_CMD_READ: Byte offset within the file of the data block to be
transferred to themyDatanet server

l FT_CMD_WRITE: Byte offset within the file of the data block received
from themyDatanet server

l FT_CMD_ENUM: List index (starting with 0) for when the server requests
the properties of a file that belongs to a file node1)

1)Upon receipt of the file transfer command "FT_CMD_ENUM", the "FT_SetPropsExt()" function can be used to set the
properties of a file that should be assigned to the current file node. This means that a file is assigned to the file node.
Following the first "FT_CMD_ENUM" command, the system sends further "FT_CMD_ENUM" commands until the device
logic developer indicates that they do not want to assign any more files to the current file node. The developer must
indicate this by setting the length for the "TFT_Info" structure (i.e. the "len" parameter) to 0 when setting the file properties
via the "FT_SetPropsExt()" function.

Rev. 03 241

14.2.17.4 Functions

native FT_Register(const name{}, id, funcidx);
Registers a file made available by the device logic.

Parameter Explanation
name Unique file name

id Unique identification with which the file is subsequently referenced (freely
selectable)

funcidx Index of the public function that should be called up if a file transfer command has
been received

Type of function: public func(id, cmd, const data{}, len, ofs);

Important note: All file transfer commands (see "File transfer
commands" in chapter "Constants" on page 240) must be handled by this
public function.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

242 Rev. 03

Chapter 14 Device Logic

native FT_RegisterEnum(id, funcidx, props[TFT_Info], len=sizeof props);
Registers a file nodemade available by the device logic. Several files can bemanaged via a file node.

Parameter Explanation
id Unique identification with which the file node is subsequently referenced (freely

selectable)

funcidx Index of the public function that should be called up if a file transfer command has
been received

Type of function: public func(id, cmd, const data{}, len, ofs);

Important note: All file transfer commands (see "File transfer
commands" in chapter "Constants" on page 240) must be handled by this
public function.

props Structure that contains the properties of a file entry for the file node (see "TFT_
Info" in chapter "Arrayswith symbolic indices" on page 240)

.name: Those parts of the file node name that are not wildcards, must also appear
in the names of the files that should bemanaged with the file node (wildcard
matching), so that the read and write operations are accepted.

.flags: Read/write flags as required; node flagmandatory

len Size (in cells) of the structure that contains the properties of a file entry –
OPTIONAL

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native FT_Unregister(id);
Removes a file from the registration. The file is no longer available for the file transfer.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 243

native FT_SetProps(id, stamp, size, crc, flags);
Sets the properties of a file

Important note: This functionmust be called up following receipt of a "FT_CMD_LIST"
command.

Important note: Although this function will still be supported for the purpose of downward
compatibility, it should no longer be used for new projects. The "FT_SetPropsExt()" function
should be used as an alternative.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

stamp Time stamp of the file (seconds since 31.12.1999)

size File size in byte

crc Ethernet CRC32 of the file

flags File flags (see "File flags" in chapter "Constants" on page 240)

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native FT_SetPropsExt(id, props[TFT_Info], len=sizeof props);
Sets the properties of a file (extended format)

Important note: This functionmust be called up following receipt of a "FT_CMD_LIST"
command.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

props Structure that contains the properties of a file entry (see "TFT_Info" in chapter
"Arrayswith symbolic indices" on page 240)

len Size (in cells) of the structure that contains the properties of a file entry –
OPTIONAL

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

244 Rev. 03

Chapter 14 Device Logic

native FT_Read(id, const data{}, len);
Transmits the data to the system, to transfer it to themyDatanet server. The datamust be provided by
the callback function specified via "FT_Register()".

Important note: This functionmust be called up following receipt of a "FT_CMD_READ"
command.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

data Array that contains the data that should be transmitted to the system to be
transferred to themyDatanet server

len Number of bytes to be transferred

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native FT_Accept(id, newid=-1);
Accepts the file that themyDatanet server wants to write. It is a new file if the transferred unique
identification number ("id" parameter) refers to a file node. In this case, an unique identification number
("newid" parameter) must be assigned to the new file. The new file must also be registered via the "FT_
Register()" function. The file properties that were transmitted by the system to the callback function (see
"Callback functions" on page 240) must be saved via the "FT_SetProps()" function.

Important note: This functionmust be called up following receipt of a "FT_CMD_STORE"
command.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

newid Unique identification for the new file that should be created (-1 if it is not a new
file) - OPTIONAL

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 245

native FT_Written(id, len);
Confirms that the data received from themyDatanet server has been written. The actual writing
processmust be executed via the callback function specified via "FT_Register()". The data that is to be
written is transmitted to the callback function by the system (see "Callback functions" on page 240).

Important note: This functionmust be called up following receipt of a "FT_CMD_WRITE"
command.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

len Number of written bytes

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native FT_Error(id);
Used to display a file handling error and terminates any file command.

Parameter Explanation
id Unique identification with which the file is referenced (specified during

registration)

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

246 Rev. 03

Chapter 14 Device Logic

14.2.18 Universal inputs

14.2.18.1 Constants

Selection of the mode for an universal input
Input modes for the UI_Init() function

UI_CHT_SI_NONE = 0, // Deactivated
UI_CHT_SI_DIGITAL = 1, // Digital
UI_CHT_SI_DCTR = 2, // Counter
UI_CHT_SI_DFREQ = 3, // Frequency
UI_CHT_SI_DPWM = 4, // PWM
UI_CHT_SI_A020MA = 5, // 0/4...20mA
UI_CHT_SI_A002V = 6, // 0...2V
UI_CHT_SI_A010V = 7, // 0...10V
UI_CHT_SI_DIRECT = 8, // Direct (corresponds to

// 0...2V mode)

Sample rate in [Hz] for the measurement
UI_SAMPLE_RATE_2 = 2,
UI_SAMPLE_RATE_4 = 4,
UI_SAMPLE_RATE_8 = 8,
UI_SAMPLE_RATE_16 = 16,
UI_SAMPLE_RATE_32 = 32,
UI_SAMPLE_RATE_64 = 64,
UI_SAMPLE_RATE_128 = 128,

Rev. 03 247

14.2.18.2 Functions

native UI_Init(channel, mode, filtertime);
Initialises an universal input (UI 1 - UI 4). The sample rate for acquiring themeasurement value is
configured by the "UI_SetSampleRate" function. Calling up the "UI_SetSampleRate" function is only
necessary, if the default sample rate setting of 16Hz (62,5ms) is not suitable for your application.
Detailed information on the universal inputs is provided in chapter "Technical details about the universal
inputs" on page 84.

Note: The energy consumption increaseswith each universal input that is initialised.

Parameter Explanation
channel Number of the universal input, starting with 0 for UI 1

Note: You can also use the predefined constants for this parameter (see
"Numbers of the universal inputs" in the chapter "System" on page 172).

mode Selection of themode for the universal input

UI_CHT_SI_NONE : Universal input deactivated
UI_CHT_SI_DIGITAL : Digital: max. 32V, low <0,99V, high >2,31V, load

10k086
UI_CHT_SI_DCTR : Counter: min. pulse length 1ms, load 10k086
UI_CHT_SI_DFREQ : Frequency: 1...1000Hz, 10k086
UI_CHT_SI_DPWM : PWM: 1...99%, max. 100Hz, min. pulse length 1ms,

load 10k086
UI_CHT_SI_A020MA : 0/4...20mA: Resolution 6,3µA, max. 23,96mA, load

96Ω
UI_CHT_SI_A002V : 0...2V: Resolution 610µV, max. 2,5V, load 10k086
UI_CHT_SI_A010V : 0...10V: Resolution 7,97mV, max. 32V, load 4k7
UI_CHT_SI_DIRECT : Direct (corresponds to 0...2V mode on the

myDatalogEASY IoT)

filtertime "Digital", "Counter", "Frequency" and "PWM"modes:

Time in [ms] during which the signal must remain constant to initiate a level
change. Used to suppress brief faults (debouncing).

"0/4...20mA", "0...2V", "0...10V" and "direct" modes:

Time in [ms] during which the analogue signal is averaged for signal smoothing.
Used to suppress signal noise.

Explanation
Return value l OK, if successful

l ERROR_NOT_SUPPORTED, if the selectedmode is not supported by
this universal input

l < OK, if another error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150).

248 Rev. 03

Chapter 14 Device Logic

native UI_Close(channel);
Deactivates an universal input (UI 1 - UI 4). Detailed information on the universal inputs is provided in
chapter "Technical details about the universal inputs" on page 84.

Note: The energy consumption decreaseswith each universal input that is deactivated.

Parameter Explanation
channel Number of the universal input, starting with 0 for UI 1

Note: You can also use the predefined constants for this parameter (see
"Numbers of the universal inputs" in the chapter "System" on page 172).

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native UI_GetValue(channel, &value=0);
Reads the last valid measurement value for the specified universal input from the system. Detailed
information on the universal inputs is provided in chapter "Technical details about the universal inputs"
on page 84.

Parameter Explanation
temp Number of the universal input, starting with 0 for UI 1

Note: You can also use the predefined constants for this parameter (see
"Numbers of the universal inputs" in the chapter "System" on page 172).

value Variable to store themeasurement value to be read out. The way in which the
measurement value has to be interpreted, is dependent on the universal input
mode.

UI_CHT_SI_NONE : ---
UI_CHT_SI_DIGITAL : Digital: 0 =^ "low", 1 =^ "high"
UI_CHT_SI_DCTR : Counter reading []
UI_CHT_SI_DFREQ : Frequency in [Hz]
UI_CHT_SI_DPWM : PWM in [%]
UI_CHT_SI_A020MA : 0/4...20mA: Current in [µA]
UI_CHT_SI_A002V : 0...2V: Voltage in [mV]
UI_CHT_SI_A010V : 0...10V: Voltage in [mV]
UI_CHT_SI_DIRECT : direct: Voltage in [mV]

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

Rev. 03 249

native UI_SetSampleRate(samplerate);
Sets the sample rate for themeasurement value acquisition at the universal inputs. The specified
setting is always valid for all of the universal inputs. Special settings for individual universal inputs are
not possible. The default value of the sample rate is 16Hz (62,5ms) . Detailed information on the
universal inputs is provided in chapter "Technical details about the universal inputs" on page 84.

Note: The energy consumption increaseswhen the sample rate is increased.

Note: The selected option also influences the possible value range for the pulse duration of the
isolated switch contact in "pulse/min." mode.

Parameter Explanation
samplerate Sample rate in [Hz]

Note: Only the constants specified in "Sample rate in [Hz] for the
measurement" in chapter "Constants" on page 247are permissible for this
parameter.

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

Note: The sample rate for the universal inputs operated in "Counter", "Frequency" or "PWM" modes is
not relevant. You can use the lowest possible value for the sample rate, if you operate all of the universal
inputs in thesemodes and do not operate the isolated switch contact in "pulse/min." mode.

native UI_ResetCounter(channel);
Resets the counter reading of an universal input that is being operated in "Counter" mode. If no error
occurred during this process, the function returns the counter reading value before resetting the
counter. Detailed information on the universal inputs is provided in chapter "Technical details about the
universal inputs" on page 84.

Parameter Explanation
channel Number of the universal input, starting with 0 for UI 1

Note: You can also use the predefined constants for this parameter (see
"Numbers of the universal inputs" in the chapter "System" on page 172).

Explanation
Return value l Counter reading before the reset

l ERROR, if an invalid parameter was transferred

250 Rev. 03

Chapter 14 Device Logic

14.2.19 Outputs

14.2.19.1 Constants

Numbers of the digital outputs
DIGOUT_CHANNEL1 = 0, // isolated switch contact 1

//Number of digital outputs, with which the device is equipped
DIGOUT_NUM_CHANNELS = 1,

Selection of the output voltage for the switchable sensor supply VOUT
Configuration options for the Vsens_On() function

VSENS_15V = 15000, // 14,7V at I
out

= 50mA

VSENS_24V = 24000, // 23,4V at I
out

= 50mA

Selection of the mode for the isolated switch contact (NO, CC)
Output modes for the DigOut_Init() function

DIGOUT_OFF = 0, // deactivated
DIGOUT_DIG = 1, // digital output
DIGOUT_FREQ = 2, // frequency output
DIGOUT_PWM = 3, // PWM output
DIGOUT_IMPULSE_PER_MINUTE = 4, // pulse/min.
DIGOUT_IMPULSE_ONCE = 5, // single output of x pulses

14.2.19.2 Functions

native Vsens_On(mode);
Activates the switchable sensor supply VOUT. The output voltage (5...24V) can be selected via the
"Mode" parameter. Detailed information on the switchable sensor supply is provided in chapter
"Switchable sensor supply VOUT" on page 88.

Parameter Explanation
mode Selection of the output voltage VOUT (5000 .. 24000 [mV])

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Rev. 03 251

native Vsens_Off();
Deactivates the switchable sensor supply VOUT. Detailed information on the switchable sensor supply
is provided in chapter "Switchable sensor supply VOUT" on page 88.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native Ext3V3_On();
Activates the switchable 3,3V supply voltage VEXT. Detailed information on the switchable 3,3V supply
voltage is provided in chapter "Switchable sensor supply VEXT" on page 89.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native Ext3V3_Off();
Deactivates the switchable 3,3V supply voltage VEXT. Detailed information on the switchable 3,3V
supply voltage is provided in chapter "Switchable sensor supply VEXT" on page 89.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

252 Rev. 03

Chapter 14 Device Logic

native DigOut_Init(digout, mode, cfg1 = -1, cfg2 = -1);
Initialises the isolated switch contact (NO, CC). Themode is selected via the "mode" parameter. The
meaning of the "cfg1" and "cfg2" parameters is dependent on the selectedmode. Detailed information
on the isolated switch contact is provided in chapter "Isolated switch contact (NO, CC)" on page 90.

Note: Using "DIGOUT_FREQ" (Frequency output) and "DIGOUT_PWM" (PWMoutput)
modes drastically increases the energy consumption.

Parameter Explanation
digout Number of the digital output (isolated switch contact); is always 0 for the

myDatalogEASY IoT

mode Selection of themode for the isolated switch contact (NO, CC)

DIGOUT_OFF : Isolated switch contact deactivated
DIGOUT_DIG : Digital output
DIGOUT_FREQ : Frequency output
DIGOUT_PWM : PWMoutput
DIGOUT_IMPULSE_PER_
MINUTE:

Pulse/min.

DIGOUT_IMPULSE_ONCE: Single output of x pulses

cfg1 DIGOUT_OFF : Not used
DIGOUT_DIG : Not used
DIGOUT_FREQ : Pulse duty factor: 1...100% (default: 50%)
DIGOUT_PWM : Frequency: 0...1000Hz (default: 100Hz)
DIGOUT_IMPULSE_PER_
MINUTE:

Pulse duration: Dependent on the sample
rate of the universal inputs1) (default:
100ms)

DIGOUT_IMPULSE_ONCE: Pulse duration: 1...500ms (default: 100ms)

cfg2 DIGOUT_OFF : Not used
DIGOUT_DIG : Not used
DIGOUT_FREQ : Not used
DIGOUT_PWM : Not used
DIGOUT_IMPULSE_PER_
MINUTE:

Not used

DIGOUT_IMPULSE_ONCE: Pulse pause: 1...500ms (default: 100ms)

1)Only a multiple of the sample rate for the universal inputs selected via the "UI_SetSampleRate()"function can be
set for the pulse duration in "Pulse/min." mode. The actual pulse duration is calculated as follows:

Pulse duration = (cfg1/sample rateUI + 1) x sample rateUI

Rev. 03 253

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native DigOut_Close(digout);
Deactivates the isolated switch contact (NO, CC). Detailed information on the isolated switch contact is
provided in chapter "Isolated switch contact (NO, CC)" on page 90.

Parameter Explanation
digout Number of the digital output (isolated switch contact); is always 0 for the

myDatalogEASY IoT

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

254 Rev. 03

Chapter 14 Device Logic

native DigOut_SetValue(digout, value);
Specifies the setpoint for the isolated switch contact (NO, CC). Themeaning of the "value" parameter is
dependent on themode of the isolated switch contact selected via the "DigOut_Init" function. Detailed
information on the isolated switch contact is provided in chapter "Isolated switch contact (NO, CC)" on
page 90.

Parameter Explanation
digout Number of the digital output (isolated switch contact); is always 0 for the

myDatalogEASY IoT

value DIGOUT_OFF : ---
DIGOUT_DIG : =0: "low" (contact open)

 > 0: "high" (contact closed)
DIGOUT_FREQ : Frequency 1...1000Hz
DIGOUT_PWM : PWM0...100%
DIGOUT_IMPULSE_PER_
MINUTE:

Number of pulses that should be issued per
minute

DIGOUT_IMPULSE_ONCE: Number of pulses that should be issued

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

Note:

Additional explanation on "Pulse/min." mode (DIGOUT_IMPULSE_PER_MINUTE):

Note that themaximum number of pulses that can be issued per minute is dependent on the pulse
duration specified via the "DigOut_Init" function:

Pulse duration = (cfg1/sample rateUI + 1) x sample rateUI
Number of pulsesmax = 60,000 ms / (pulse duration + sample rateUI)

Note:

Additional explanation on "Pulse" mode (DIGOUT_IMPULSE_ONCE):

The time required to issue the specified number of pulses is dependent on the pulse duration and pulse
pause specified via the "DigOut_Init" function:

t = number of pulses x (pulse duration + pulse pause)

Rev. 03 255

native RS232_3V3_On();
Activates the switchable 3,3V supply voltage VEXTRS232. Detailed information on the switchable 3,3V
supply voltage VEXTRS232 is provided in chapter "Switchable sensor supply VEXTRS232" on page 90.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native RS232_3V3_Off();
Deactivates the switchable 3,3V supply voltage VEXTRS232. Detailed information on the switchable
3,3V supply voltage VEXTRS232 is provided in chapter "Switchable sensor supply VEXTRS232" on
page 90.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

14.2.20 LED

14.2.20.1 Constants

Selection of whether the two-colour LED is controlled by the firmware or script
Configuration options for the Led_Init() function

LED_MODE_INTERNAL = 0, // controlled by the FW
LED_MODE_SCRIPT = 1, // controlled by the script

256 Rev. 03

Chapter 14 Device Logic

14.2.20.2 Functions

native Led_Init(mode);
Initialises the two-colour LED

Parameter Explanation
mode Selection of whether the two-colour LED is controlled by the firmware or script

LED_MODE_
INTERNAL :

The two-colour LED is used to indicate the operating
state (see "Three-colour LED" on page 99).

LED_MODE_SCRIPT : The state of the two-colour LED can be controlled by
the "Led_On", "Led_Off", "Led_Blink" and "Led_Flash"
script functions.

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native Led_Close();
Deactivates the two-colour LED. The two-colour LED cannot be controlled by the firmware or the script
functions.

Explanation
Return value OK, if successful

native Led_On(bool:red, bool:green);
The two-colour LED consists of a red and a green LED that can be switched on separately by this
function. If both LEDs are switched on simultaneously, the two-colour LED lights up orange.

Parameter Explanation
red true: The red LED is switched on.

green true: The green LED is switched on.

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

Rev. 03 257

native Led_Off(bool:red, bool:green);
The two-colour LED consists of a red and a green LED that can be switched off separately by this
function.

Parameter Explanation
red true: The red LED is switched off.

green true: The green LED is switched off.

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native Led_Blink(red, green);
Enables the two-colour LED to flash (ton = 500ms , toff = 500ms). The two-colour LED consists of a red
and a green LED. If both LEDs are used, the two-colour LED flashes orange.

Parameter Explanation
red -1 : The red LED remains switched off.

 0 : The red LED flashes until it is deliberately switched off.
>0 : Number of times the red LED should flash

green -1 : The green LED remains switched off.
 0 : The green LED flashes until it is deliberately switched off.
>0 : Number of times the green LED should flash

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native Led_Flash(red, green);
Enables the two-colour LED to briefly flash every 500ms . The two-colour LED consists of a red and a
green LED. If both LEDs are used, the two-colour LED briefly flashes orange.

Parameter Explanation
red -1 : The red LED remains switched off.

 0 : The red LED briefly flashes at regular intervals until it is deliberately switched off
>0 : Number of times the red LED should briefly flash at regular intervals

green -1 : The green LED remains switched off.
 0 : The green LED briefly flashes at regular intervals until it is deliberately switched off
>0 : Number of times the green LED should briefly flash at regular intervals

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

258 Rev. 03

Chapter 14 Device Logic

native Led_Flicker(red, green);
Enables the two-colour LED to flicker (ton = 94ms , toff = 31ms). The two-colour LED consists of a red
and a green LED. If both LEDs are used, the two-colour LED flickers orange.

Parameter Explanation
red -1 : The red LED remains switched off.

 0 : The red LED flickers until it is deliberately switched off.
>0 : Number of times the red LED should flicker

green -1 : The green LED remains switched off.
 0 : The green LED flickers until it is deliberately switched off.
>0 : Number of times the green LED should flicker

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

14.2.21 Solenoid switch

14.2.21.1 Constants

Selection of whether the solenoid switch is evaluated by the firmware or script
Configuration options for the Switch_Init() function

SWITCH_MODE_INTERNAL = 0, // evaluation by the FW
SWITCH_MODE_SCRIPT = 1, // evaluation by the script

14.2.21.2 Callback Funktionen

public func(key);
Function to be provided by the script developer, that is called when the state of the button changes

Parameter Explanation
key Indicateswhich state change called the function

0: Button was released
1: Button was pressed

Rev. 03 259

public func(key);
Function to be provided by the script developer, that is called when the state of the lid reed contact
changes

Parameter Explanation
key Indicateswhich state change called the function

0: Housing cover has been opened
1: Housing cover has been closed

14.2.21.3 Functions

native Switch_Init(mode, funcidx=-1);
Initialises the solenoid switch

Parameter Explanation
mode Selection of whether the solenoid switch is evaluated by the firmware or script

SWITCH_MODE_
INTERNAL :

If the button was pressed and held for 3 sec., a
transmission is initiated when the button is
released.

SWITCH_MODE_SCRIPT : In the event of a state change of the button (press
or release), the public function, for which the
indexwas transferred to the "Switch_Init"
function, is called.

funcidx Index of the public function that should be executed in the event of a state change
of the button (only necessary if mode=SWITCH_MODE_SCRIPT)

Type of function: public func(key);

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native Switch_Close();
Deactivates the solenoid switch. An action is no longer initiated when the button is pressed.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

260 Rev. 03

Chapter 14 Device Logic

native LidCover_Init(mode, funcidx=-1);
Initialises the lid reed contact

Parameter Explanation
mode reserved for extensions; must be set to 0

funcidx Index of the public function that should be executed in the event of a state change
of the lid reed contact

Type of function: public func(key);

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

native LidCover_Close();
Deactivates the lid reed contact. When the housing cover is opened/closed, no action is triggered any
more.

Explanation
Return value l OK, if successful

l < OK, if an error occurs (see "Return codes for general purposes" in
chapter "Constants" on page 150)

14.2.22 Power management

14.2.22.1 Arrays with symbolic indices

TPM_Info
Information on the energy source used and power management status

// BatteryType PSU type (see "Type of power supply unit" in chapter
// "Constants" on page 262)
// Flags Power management status (see "Power management status"
// in chapter "Constants" on page 262)
// VIn Supply or charging voltage V IN in [mV]
// VBatt Battery or rechargeable battery voltage in [mV]
// SOC State of charge in [0.01%]
// PIn Power consumption in [mW]
// ChargingMode Charge mode (see "Charge mode" in chapter
// "Constants" on page 262)
// Description Designation of the power supply unit

#define TPM_Info[.BatteryType, .Flags, .VIn, .VBatt, .SOC, .PIn,
.ChargingMode, .Description{16}]

Rev. 03 261

14.2.22.2 Constants

Charging mode
PM_CHARGING_OFF = 0, // Charge control deactivated
PM_CHARGING_NORMAL = 1, // charge, if state of charge <50%
PM_CHARGING_SOLAR = 2, /* always charge when possible and sufficient

input voltage (V IN > 16V) is available */

Type of power supply unit
PM_BATT_TYPE_NONE = 0, // No battery or external power supply
PM_BATT_TYPE_NORMAL = 1, // Battery, only discharged
PM_BATT_TYPE_LIIO = 2, // li-ion rechargeable battery

Power management status
PM_FLAG_CHARGING = 0x00000001, // Charge control active
PM_FLAG_BACKUP = 0x00000002, /* Supply via internal energy source

following failure of V IN (only if
V IN monitoring was activated) */

PM_FLAG_ERROR = 0x00000008, /* Power management error (does not charge,
SoC cannot be determined, because the
memory of the power supply unit could
not be read, for example) */

PM_FLAG_AKKU_FAULT = 0x00000010, /* The rechargeable battery has been
marked defective and can no longer be
charged. */

Configuration of the Coulomb counter (electric charge)
Configuration flags for the PM_GetCoulombCounter() function

PM_CC_RESET = 0x00000001, /* Reset Coulomb counter that can be used
for the application */

14.2.22.3 Callback functions

public func();
Function to be provided by the script developer, that is called up if a failure of the supply or charging
voltage V IN has been detected

262 Rev. 03

Chapter 14 Device Logic

14.2.22.4 Functions

native PM_SetChargingMode(mode);
Sets the chargemode. Detailed information on the charge control is provided in chapter "Technical
details about energymanagement" on page 90.

Parameter Explanation
mode PM_CHARGING_OFF : Charge control deactivated

PM_CHARGING_NORMAL : Charge if the state of charge of the
rechargeable battery is <50%.

PM_CHARGING_SOLAR : Charge continuously, if possible, and the
supply or charging voltage V IN is above 16V

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred
l ERROR-1, if the reghargeable battery has beenmarked as defective and
can no longer be charged.

native PM_BackupInit(funcidx);
Activatesmalfunctionmonitoring for the supply or charging voltage V IN and specifies the function that
should be called up in the event of the supply or charging voltage V IN failing

Parameter Explanation
funcidx Index of the public function that should be called up if a failure of the supply or

charging voltage V IN has been detected

Type of function: public func();

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native PM_BackupClose();
Deactivatesmalfunctionmonitoring for the supply or charging voltage V IN

Explanation
Return value OK, if successful

Rev. 03 263

native PM_GetInfo(info[TPM_Info], len=sizeof info);
Provides information on the energy source used and power management status

Parameter Explanation
info Structure for storing the information (see "TPM_Info" in chapter "Arrayswith

symbolic indices" on page 261)

len Size (in cells) of the structure to store the information - OPTIONAL

Explanation
Return value l OK, if successful

l ERROR, if an invalid parameter was transferred

native PM_GetCoulombCounter(flags=0);
Reads the current state of the Coulomb counter (electric charge) that can be used for the application
derived from the system's internal Coulomb counter

Parameter Explanation
flags Configuration flags to be set/deleted - OPTIONAL

Bit0: Resetting the Coulomb counter that can be used for the application
 0 = no action
 PM_CC_RESET = Counter reset

Explanation
Return value Depleted electric charge [mAs] since the last reset of the Coulomb counter that

can be used for the application

14.3 Device Logic error codes
If an error occurs while executing the Device Logic, the corresponding error code is entered in the device log
and the Device Logic is restarted. If such an error occursmore than three times in 24 hours, the Device Logic
is deactivated and error handling is activated (see "Error handling" on page 42). The parameter for all log
entries except "SCRIPT_ERR" contains the 32-bit instruction pointer of the Abstract machine (AMX). Two
entries are generated in the device log as only 16-bit values can be saved in the parameter of a log entry. The
first entry contains Bit31-Bit16 and the second entry contains Bit15-Bit0 of 32-bit instruction pointer.
Instructions on evaluating the device log are included in the chapter "Log tab" (see ""Log" tab" on page 118).

264 Rev. 03

Chapter 14 Device Logic

Log entry Parameter DescriptionCode Plain text Code Plain text
3000 SCRIPT_ERR 0 NOSCRIPT No valid Device Logic available

1 SCRIPT UPDATE New Device Logic received

2 SCRIPT EXCEPT
LOOP

Exception loop detected (4 system starts due to
exception within 10 min.).

The Device Logic is deactivated and error
handling is activated (see "Error handling" on
page 42). The file system is also reformatted.
Thismeans that all of the data and log entries
recorded to date are deleted. This is indicated by
the additional "LOGREFORMATFILE" log entry.

3 SCRIPT SOFT
ERROR 1

First time a runtime error has occurred within
24 hours. Device Logic was restarted.

4 SCRIPT SOFT
ERROR 2

Second time a runtime error has occurred within
24 hours. Device Logic was restarted.

5 SCRIPT SOFT
ERROR 3

Third time a runtime error has occurred within
24 hours. Device Logic was restarted.

The Device Logic is deactivated and error
handling is activated if another runtime error
should occur within 24 hours (see "Error
handling" on page 42).

6 SCRIPT UPDATE
ERROR

Error when installing the device logic received
during the download.

The "Interval & Wakeup" connection type was
activated and a connection to the server is
established every hour.

7 SCRIPT SYSTEM
SHUTDOWN

Reserved for extensions

8 SCRIPT
DOWNLOAD
ERROR

Connection aborted while downloading the
device logic.

Although this does not affect the existing Device
Logic. It can continue to be executed.

9 SCRIPT DELETED The device logic was deletedmanually (e.g.
using rapidM2MStudio).

The "Interval & Wakeup" connection type was
activated and a connection to the server is
established every 24 hours.

3001 AMX_ERR_EXIT ## --- Abortion

e.g. max. number of commands (100,000) per
run reached

Rev. 03 265

Log entry Parameter DescriptionCode Plain text Code Plain text
3002 AMX_ERR_

ASSERT
--- Assertion failed

3003 AMX_ERR_
STACKERR

--- Stack/heap collision (insufficient stack size)

3004 AMX_ERR_
BOUNDS

--- Array index outside the valid range

3005 AMX_ERR_
MEMACCESS

--- Invalid memory access

e.g. mix-up between cell (32-bit element) access
[] and byte access {}

3006 AMX_ERR_
INVINSTR

--- Invalid statement

3007 AMX_ERR_
STACKLOW

--- Stack underflow

3008 AMX_ERR_
HEAPLOW

--- Heap underflow

3009 AMX_ERR_
CALLBACK

--- No (invalid) native callback function

3010 AMX_ERR_NATIVE ## --- Native function failed

3011 AMX_ERR_DIVIDE ## --- Division by zero

3012 AMX_ERR_SLEEP ## --- Sleepmode

3013 AMX_ERR_
INVSTATE

--- Invalid state

3014 reserved

3015 reserved

3016 AMX_ERR_
MEMORY

--- Out of memory

3017 AMX_ERR_
FORMAT

--- P-code file format is invalid/not supported

3018 AMX_ERR_
VERSION

--- File is for a newer version of AMX

3019 AMX_ERR_
NOTFOUND

--- File or function not found

3020 AMX_ERR_INDEX ## --- Invalid index parameter (invalid entry point)

3021 AMX_ERR_DEBUG ## --- Debugger cannot be executed

3022 AMX_ERR_INIT ## --- AMX not initialised (or initialised twice)

3023 AMX_ERR_
USERDATA

--- User data field cannot be set (table full)

266 Rev. 03

Chapter 14 Device Logic

Log entry Parameter DescriptionCode Plain text Code Plain text
3024 AMX_ERR_INIT_

JIT
--- JIT cannot be initialised.

3025 AMX_ERR_
PARAMS

--- Faulty parameter

3026 AMX_ERR_
DOMAIN

--- Domain error. The result of the expression is not
in the valid range.

3027 AMX_ERR_
GENERAL

--- General error (invalid or non-specific error)

3028 AMX_ERR_
OVERLAY

--- Overlays are not supported (JIT) or are not
initialised.

3050 LOG_NOSCRIPT_
ERR

1 SCRIPT File not
available

Meta information on the Device Logic not
available

2 SCRIPT File not fully
downloaded

Inconsistency between themeta information on
the Device Logic and the Device Logic itself
detected

3 SCRIPT Error
reading file

Error detecting the Device Logic type

4 SCRIPTMarked
faulty

Device Logic ismarked as faulty (4 runtime
errors have occurred within 24 hours)

5 SCRIPT Invalid type Invalid Device Logic Typ detected

6 SCRIPT Error
loading program

Error initializing the Device Logic

7 SCRIPT Exception
loop detected

Exception Loop detected (4 system starts due to
exception within 10min.)

8 SCRIPT Invalid
filesize

If the size of the Binarys is <= 1 Byte

Rev. 03 267

14.4 Syntax

14.4.1 General syntax

14.4.1.1 Format

Identifiers, numbers and characters are separated by spaces, tabs, line breaks and "form feed". A series of
one or more of these separators is recognised as an empty space.

14.4.1.2 Optional semicolons

Semicolons (used to finish a statement) are optional if they are at the end of a line. Semicolons are required to
separate several statements in a line. An expression can be split across several lines, though the postfix
operatorsmust be on the same line as the operand.

14.4.1.3 Comments

Text between the /* and */ symbols (both symbols can be on the same or different lines) and text following //
(to the end of the line) are comments. Commentsmust not be nested. The compiler considers comments to
be blank space. A documentation comment is a comment that starts with "/** " (two stars and space after the
second star) and endswith "*/". A comment that starts with "/// " (three forward slashes and a space after the
third slash) is also a documentation comment. The parser can support the documentation comment in
different ways, for example, by using it to generate online help.

14.4.1.4 Identifier

Names of variables, functions and constants. Identifier comprises the characters a...z, A...Z, 0...9, _ or@.
The first character must not be a number. The characters@ and _ on their own are not valid identifiers, e.g.
"_Up" is a valid identifier but "_" is not. A distinction ismade between upper and lower case. The parser cuts
identifiers off after a certain length. By default, only the first 16 characters are referenced for distinguishing
purposes.

14.4.1.5 Reserved keywords

Statements Operator Directives Others
assert
break
case
continue
default
do
else
exit
for
goto
if
return
sleep
state
switch
while

defined
sizeof
state
tagof

defined
sizeof
state
tagof

defined
sizeof
state
tagof

268 Rev. 03

Chapter 14 Device Logic

14.4.1.6 Numerical constants

14.4.1.6.1 Numerical integer constants

Binary
0b followed by a series of 0 and 1

Decimal
A series of numbers between 0 and 9

Hexadecimal
0x followed by a series of numbers between 0 and 9 and the letters a to f

14.4.1.6.2 Numerical floating-point constants

A floating-point number is a number with numbers after the decimal point. A floating-point number starts with
one or several numbers, includes a decimal point and has at least one number after the decimal point, e.g.
"12.0" and "0.75" are valid floating-point numbers. An exponent can optionally be added. The notation is the
letter "e" (lower case) followed by an integer numerical constant. For example, "3.12e4" or "12.3e-3" are valid
floating-point numbers with an exponent.

14.4.2 Variables

14.4.2.1 Declaration

The keyword "new" declares a new variable. For special declarations, the keyword "new" is replaced with
"static" (see "Static local declaration" on page 270). The value of the new variable is zero, provided that is not
initialised explicitly.

A variable declaration can appear

l At every position at which an expression is valid - local variable
l At every position at which a function declaration or the implementation of the function is valid - global
variables

l In the first expression of a "for" loop (see "For (expression 1; expression 2; expression 3) statement" on
page 280) - local variable

Example:

new a; // without initialisation (value is 0)
new b = 3; // with initialisation (value is 3)

14.4.2.2 Local declaration

A local declaration appears within a statement block. A variable can only be accessed within this block and
the blocks that it comprises. A declaration within the first expression of a loop instruction is also a local
declaration.

14.4.2.3 Global declaration

A global declaration appears outside of a function and a global variable can be used in any function. Global
variables can only be initialised with constant expressions.

Rev. 03 269

14.4.2.4 Static local declaration

A local variable is destroyed if the execution leaves the block in which the variable was created. Local
variables in a function only exist during the operating time of the specified function. Each new call up of the
function creates and initialises new local variables. The variable will also remain in thememory at the end of
the function, if a local variable is declared with the keyword "static" instead of "new". Thismeans that static,
local variables provide permanent private storage that can only be accessed by a single function (or block).
Static local variables can only be initialised with constant expressions, the sameway as global variables.

14.4.2.5 Static global declaration

A static global variable acts in the sameway as a global variable with the difference that the variable is only
valid in the file in which it was declared. Replace the keyword "new" with "static" to declare a global variable
as static.

14.4.2.6 Floating point values

Floating point values are supported. These can be added at every point at which a variable declaration is
valid.

Example:

new Float:a; // without initialisation (value is 0.0)
new Float:b = 3.0; // with initialisation (value is 3.0)

14.4.3 Constant variables
It is sometimes necessary to create a variable that is initialised once and is then not meant to be changed
again. Such a variable acts in a similar way to a symbolic constant although it is still a variable. To declare a
constant variable, place the keyword "const" between the keyword that starts the variable declaration ("new",
"static") and the name of the variables.

Example:

new const address[4] = { 192, 0, 168, 66 }
static const status /* initialised to zero */

Typical situations in which you could use a constant variable, include:

l To create an "array" constant. Symbolic constants cannot be accessed via the index.
l It is a special case when array arguments aremarked as "const" in a function. Arrays arguments are
always transferred via a reference. If the arguments are declared to be "const", they are protected
against unwanted changes. See examples of "const function arguments" in the chapter "Function
arguments ("call-by-value" versus "call-by-reference")" on page 283.

14.4.4 Array variables

14.4.4.1 One-dimensional arrays

The name[constant] syntax declares the name as an array of "constant" elements, where each element is an
entry. "name" is a placeholder for the name of the variable and "constant" is a positive value not equal to zero.
"constant" is optional and can be omitted. If there is no value between the brackets, the number of elements is
equal to the number of initial values. The array index area is "zero-based", whichmeans that the first element
is "name[0]" and the last element is "name[constant-1]".

270 Rev. 03

Chapter 14 Device Logic

14.4.4.2 Initialisation

Data objects can be initialised during their declaration. The initialised value from global data objectsmust be a
constant value. Global or local arraysmust also be initialised with constant values. Data that is not initialised
are zero by default.

Example:

List: valid declaration

new i = 1
new j
new k = ’a’
new a[] = [1,4,9,16,25]
new s1[20] = [’a’,’b’]
new s2[] = ’’Hello world...’’

/* j is 0 */
/* k has the character code of ’a’ */
/* a has 5 elements */
/* the remaining 18 elements are 0 */
/* an unpacked string */

List: invalid declaration

new c[3] = 4

new i = "Good-bye"
new q[]
new p[2] = { i + j, k - 3 }

/* An array cannot be set to an individual
 value */
/* only an array can hold a string */
/* Unknown size for an array */
/* Array initialisersmust be constants */

14.4.4.3 Progressive initialisation for arrays

The point operator continues the initialisation of the arrays based on the last two initialised values. The point
operator (three points, "...") initialises the array up to the array limit.

Example: List: array initialisers

new a[10] = { 1, ... }
new b[10] = { 1, 2, ... }
new c[8] = { 1, 2, 40, 50, ... }
new d[10] = { 10, 9, ... }

// sets all of the elements to 1
// b = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
// c = 1, 2, 40, 50, 60, 70, 80, 90
// d = 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

14.4.4.4 Multi-dimensional arrays

(Only arrayswith up to three dimensions are supported)

Multi-dimensional arrays are arrays that include references to other sub-arrays. For example, a two-
dimensional array is an "array on one-dimensional arrays".

Example for the declaration of two-dimensional arrays:

new a[4][3]
new b[3][2] = [[1, 2], [3, 4], [5, 6]]
new c[3][3] = [[1], [2, ...], [3, 4, ...]]
new d[2]{10} = ["agreement", "dispute"]
new e[2][] = [’’OK’’, ’’Cancel’’]
new f[][] = [’’OK’’, ’’Cancel’’]

Rev. 03 271

As the last two declarations (variables "e" and "f") illustrates, the last dimension has an unspecified length. In
this case, the length of the sub-array is detected by the associated initialiser. Each sub-array is a different
length. In this specific example, "e[1][5]" includes the letter "l" of the word "Cancel". However, "e[0][5]" is
invalid as the sub-array e[0] only comprises three entries (the letters "O", "K" and the zero terminator). The
difference between the declarations of the "e" and "f" arrays is that we enable the compiler to determine the
number of higher dimensions for "f". "sizeof f" and "sizeof e" are both 2 (see "Arrays and the "sizeof" operator"
on page 272).

14.4.4.5 Arrays and the "sizeof" operator

The "sizeof" operator returns the number of elements of a variable. The "sizeof" result of a simple (non array)
variable is always 1.

An array with one dimension comprises a number of elements and the "sizeof" operator returns this quantity.
The code section below would therefore issue "5", as the array comprises four characters and the zero
terminator.

new msg[] = ’’Help’’
printf(’’%d’’, sizeof msg);

The "sizeof" operator always returns the number of entries even for a "packed" array. The code section below
also issues "5", as the variable comprises five entries even though it requires lessmemory space.

new msg{} = "Help"
printf(’’%d’’, sizeof msg);

For multi-dimensional arrays, the "sizeof" operator can return the number of elements for every dimension.
An element in the last (lowest) dimension is a single entry, while it is a sub-array in the highest dimension.
Please note that in the following code section, the "sizeof matrix" syntax returns the number of elements of the
higher dimension and that the "sizeof matrix[]" syntax issues the lower dimension of the two-dimensional
array. The code section issues three (higher dimension) and two (lower dimension).

new matrix[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }
printf(’’%d %d’’, sizeof matrix, sizeof matrix[]);

The application of the "sizeof" operator onmulti-dimensional arrays is particularly practical when it is used as
a standard value for function arguments.

272 Rev. 03

Chapter 14 Device Logic

14.4.5 Operators and expressions

14.4.5.1 Notational conventions

The use of some operators is dependent on the relevant type of operand. The following notations are
therefore used in this chapter:
e

Any expression
v

Any expression that can be assigned a value ("lvalue" expression - variable)
a

An array
f

A function
s

A symbol - this can be a variable, a constant or a function

14.4.5.2 Expressions

An expression consists of one or several operandswith an operator. The operand can be a variable, a
constant or another expression. An expression followed by a semicolon is a statement.

Examples of expressions:

v++ f(a1, a2)
v = (ia1 * ia2) / ia3

14.4.5.3 Arithmetic

Operator Example Explanation
+ e1 + e2 Result of adding e1 and e2

- e1 - e2 Result of subtracting e2 from e1

-e Result of the arithmetic negation of e (two's complement)

* e1 * e2 Result of multiplying e1 with e2

/ e1 / e2 Result of dividing e1 by e2. The result is truncated to the closest whole number that is
less or equal to the quotient. Positive and negative values are rounded down (negative
infinity).

% e1% e2 Result is the remainder of the division of e1 by e2. The prefix is the same as that of e2

++ v++ Increases v by 1. The result of the expression is the value before the increase.

++v Increases v by 1. The result of the expression is the value following the increase.

-- v-- Decreases v by 1. The result of the expression is the value before the decrease.

--v Decreases v by 1. The result of the expression is the value following the decrease.

Note: The unary + is not defined. The operators ++ and -- change the operand. The operandmust be
a "lvalue".

Rev. 03 273

14.4.5.4 Bit manipulation

Operator Example Explanation
~ ~e The result is the one's complement of e.

>> e1 >> e2 The result of the arithmetic shift to the right of e1 by e2 bits. The shift is signed: The bit
on the far left is copied to the free bits of the result.

>>> e1 >>>
e2

The result of the logical shift to the right of e1 by e2 bits. The shift is unsigned. The free
bits of the result are filled with 0.

<< e1 << e2 Result: Shift to the left of e1 by e2 bits. The free bits of the result are filled with 0. There
is no difference between an arithmetic and a logical shift to the left.

& e1 & e2 The result is the bitwise logical "and" of e1 and e2.

| e1 | e2 The result is the bitwise logical "or" of e1 and e2.

^ e1 ^ e2 The result is the bitwise logical "exclusive or" of e1 and e2.

14.4.5.5 Assignment

The result of an assignment expression is the value of the operand following the assignment.

Operator Example Explanation
= v = e Assigns the value of e to the variable v

v = a Assigns the array a to variable v. vmust be an array of the same size and with the
same dimensions as a. a can be a character string or an array.

Note: The following operators combine an assignment with an arithmetic or bitwise operation. The
result of the expression is the value of the left operand following the arithmetic or bitwise operation.

Operator Example Explanation
+= v += e Increases v by e

-= v -= e Decreases v by e

*= v *= e Multiplies v with e

/= v /= e Divides v by e

%= v%= e Assigns v the remainder of the division of v and e

>>= v >>= e Arithmetically shifts v to the right by e bits

>>>= v >>>= e Logically shifts v to the right by e bits

<<= v <<= e Shifts v to the left by e bits

&= v &= e Executes a bitwise "and" from v and e and assigns the result to v

|= v |= e Executes a bitwise "or" from v and e and assigns the result to v

^= v ^= e Executes a bitwise "exclusive or" from v and e and assigns the result to v

274 Rev. 03

Chapter 14 Device Logic

14.4.5.6 Comparative operators

A logical "false" is represented by an integer value of 0; a logical "true" is represented by a value that is not 0.
Results of a comparative expression are either 0 or 1 and the "tag" is set to "bool".

Operator Example Explanation
== e1 == e2 The result is "true" if e1 and e2 are the same.

!= e1 != e2 The result is "true" if e1 and e2 are not the same.

Note: The following operators can be linked, the same as in the expression "e1 <= e2 <= e3". This
means that the result is "1" if every single comparison is true and "0" if at least one comparison is false.

Operator Example Explanation
< e1 < e2 The result is a logical "true" if e1 is less than e2.

<= e1 <= e2 The result is a logical "true" if e1 is less or equal to e2.

> e1 > e2 The result is a logical "true" if e1 is greater than e2.

>= e1 >= e2 The result is a logical "true" if e1 is greater or equal to e2.

14.4.5.7 Boolean

A logical "false" is represented by an integer value of 0; a logical "true" is represented by a value that is not 0.
Results of a comparative expression are either 0 or 1 and the "tag" is set to "bool".

Operator Example Explanation
! !e The result is a logical "true", if e is logical "false".

|| e1 || e2 The result is "true", if either e1 or e2 (or both) are logical "true". The expression e2 is
only evaluated if e1 is logical "false".

&& e1 && e2 The result is "true" if e1 and e2 are logical "true". The expression e2 is only evaluated if
e1 is logical "true".

Rev. 03 275

14.4.5.8 Other

Operator Example Explanation
[] a[e] Array index: The result is the entry at position e of array a.

{ } a{e} Array index: The result is the index at position e of "packed" array a:

() f(e1, e2, ... eN) The result is the value that is returned by function f. The function is called up
with parameters e1, e2, ... eN. The sequence of the evaluation of the
parameters is not defined. (The implementation of the script enginemay
evaluate the parameters in reverse order.)

? : e1 ? e2 : e3 The result is either e2 or e3, depending on the value of e1. The conditional
expression is a composite expression with a two-part operator, "?" and ":".
The expression e2 is evaluated if e1 is logical "true"; e3 is evaluated if e1 is
logical "false".

: tagname: e "Tag" overwritten: The value of the expression does not change, although
the "tag" does change.

defined defined s Result is "1" if the symbol was defined. The symbol can be a constant or a
global or local variable. The "tag" of the expression is "bool"

sizeof sizeof s The result is the number of elements of the specified variable. An element
is an entry for simple variables and for one dimensional arrays. For multi-
dimensional arrays, the result is the number of elements (sub-arrays) in the
highest dimension. Add [] to the name of the array to specify a lower
dimension. The result is 0 if the size of the variable is not known. If this
operator is used in a "default" value of a function, the expression is
executed at the time that the function was called up and not at the time that
the definition was completed.

tagof tagof s The result is a unique number that represents the "tag" of the variables, the
constants, the return value of a function or the name of the "tag" title. If this
operator is used in a "default" value of a function, the expression is
executed at the time that the function was called up and not at the time that
the definition was completed.

14.4.5.9 Priority of the operators

The following table groups the operators with the same priority, starting with the highest priority at the top of
the table.

If the evaluation of an expression is not explicitly justified with brackets, it is categorised by the association
rules. For example: a*b/c is equal to (a*b)/c based on the left to right association, and a=b=c is equal to
a=(b=c).

276 Rev. 03

Chapter 14 Device Logic

Operator Explanation Reading order
()
[]
{ }

Function call
array index (element)
array index (character)

left-to-right

!
~
-
++
--
:
defined
sizeof
tagof

logical not
one's complement
two's complement (unaryminus)
increase
decrease
"tag" overwritten
symbol definition status
symbol size in "elements"
unique number of the tag

right-to-left

*
/
%

multiplication
division
modulo

left-to-right

+
-

addition
subtraction

left-to-right

>>
>>>
<<

arithmetic shift to the right
logical shift to the right
shift to the left

left-to-right

& bitwise "and" left-to-right

^ bitwise "exclusive or" left-to-right

| bitwise "or" left-to-right

<
<=
>
>=

less than
less or equal to
greater than
greater or equal to

left-to-right

==
!=

equal
unequal

left-to-right

&& logical "and" left-to-right

|| logical "or" left-to-right

? : conditional execution right-to-left

= Assignment
*= /= %= += -= >>= >>>= <<= &= ^= |=

right-to-left

, comma left-to-right

14.4.6 Statements
A statement can comprise one or several lines. A line can comprises two or more statements.

Statements for the sequence control (if, if-else, for, while, do-while and switch) can be nested.

14.4.6.1 Statement label

A label consists of an identifier followed by a ":". A label is a "Jump target" of a "goto" statement.

Rev. 03 277

Each statement can bemarked with a label. The label must be followed by a statement, which can also be an
"empty statement".

The scope of a label is the function in which it was declared, i.e. a "goto" statement cannot jump from the
current function to another function.

14.4.6.2 Composite statements

A composite statement (also known as a block) is a series of zero or several statements that is enclosed by
brackets ("{" and "}"). The closing bracket ("}") must not be followed by a semicolon. Each statement can be
replaced by a block. A composite statement that does not comprise any statements is a special case and is
known as an "empty statement".

14.4.6.3 Expression statement

Each expression becomes a statement when a semicolon (";") is added. An expression also becomes a
statement, if the expression is only followed by blank spaces to the end of the line, and the expression is not
continued in the next line.

14.4.6.4 Empty statement

An empty statement does not execute any statements and consists of a block statement without statements,
i.e. it consists of the "{ }" symbol. Empty statements are implemented in control flow statements without
actions (e.g. "while (!iskey()) {}") or if a label is defined exactly before the closing bracket of a block statement.
An empty statement does not end with a semicolon.

14.4.6.5 Assert expression

The program is aborted with a runtime error if the expression is logical "false"

Note: This expression protects against "impossible" or invalid conditions. In the following example, a
negative fibonacci number is invalid. The assert statement marks this error as a programming error.
Assert statements should only ever highlight programmer errors and never user inputs.

Example:

fibonacci(n)
{

assert n > 0

new a = 0, b = 1
for (new i = 2; i < n; i++)
{

new c = a + b
a = b
b = c

}
return a + b

}

278 Rev. 03

Chapter 14 Device Logic

14.4.6.6 Break

Terminates and leaves the smallest, encircling "do", "for" or "while" statement at any point in the loop. The
"break" statement moves the program flow to the next statement outside the loop.

Example:

example(n)
{

new a = 0

for(new i = 0; i < n ; i++)
{

a += i

if(i>10)
break

a += 1
}
return a

}

14.4.6.7 Continue

Terminates the current iteration of the smallest encircling "do", "for" or "while" statement andmoves the
program control to the conditional part of the loop.

Example

example(n)
{

new a = 0

for(new i = 0; i < n ; i++)
{

a += i

if(i>10)
continue

a += 1
}
return a

}

Rev. 03 279

14.4.6.8 Do statement while (expression)

Executes a statement before the conditional part (the "while" condition) is evaluated. The statement is
repeated as long as the condition is logical "true". The statement is executed at least once.

Example:

example(n)
{

new a = 0

do
{

a++
}
while(n >= 0)

return a
}

14.4.6.9 Exit expression

Cancels the program. The expression is optional, however, if present it must start and end on the same line
as the "exit" statement. The exit statement returns the expression value or zero to themain application, if no
expression is specified.

14.4.6.10 For (expression 1; expression 2; expression 3) statement

All three of the expressions are optional.

Expression 1:
Is only evaluated once before entering the loop. This expression can be used to initiate a variable. This
expression also includes the variable declaration bymeans of the "new" syntax. A variable that is
declared at this stage is only valid in the loop. It is not possible to combine an expression (with existing
variables) and a declaration of new variables in this field. All of the variablesmust either already exist in
this field, or theymust all be declared in this area.

Expression 2:
This expression is executed before every run of the loop and terminates the loop if the expression
logical "false" is returned. If this expression is omitted, it is assumed that the result of expression 2 is
logical "true".

Expression 3:
This expression is executed each time the statement is completed. The program control moves from
expression 3 to expression 2 for the next (conditional) iteration of the loop.

280 Rev. 03

Chapter 14 Device Logic

Example:

example(n)
{

new a = 0

for(new i = 0; i < n; i++)
{

a++
}

return a
}

The "for (; ;)" statement is the same as the "while (true)" statement.

14.4.6.11 Goto label

Moves the program control (unconditionally) to the statement that follows the specified label. The label must
be within the same function as the "goto"-statement (a "goto"-statement cannot jump out of a function).

14.4.6.12 If (expression) statement 1 else statement 2

Executes statement 1 if the results of the expression is logical "true". The "else"clause of the "if" statement is
optional. If the result of the expression is logical "false" and there is an "else" clause, the statement that is
associated with the "else" clause (statement 2) is executed.

Example:

example(n)
{

if(n < 0)
return -1

else if (n == 0)
return 0

else
return 1

}

14.4.6.13 Return expression

Terminates the current function andmoves the program control to the next statement following the function
call. The expression value is returned as the function result. The expression can be an array or a character
string. The expression is optional, however, if present it must start on the same line as the "return" statement.
Zero is returned if no expression is specified.

14.4.6.14 switch (expression) {case list}

Transfers the sequence control to the various statements within the "switch", depending on the value of the
"switch" expression. Themain part of the "switch" statement is a composite statement that comprises a series
of "case" clauses. Each "case" clause starts with the keyword "case" followed by a list of constants and a
statement. The list of constants is a series of expressions separated by commas, each of which is evaluated
as a constant value. This list endswith a colon. To specify an area in this list, separate the lower and upper
limit of the area with a double point (".."). An example for an area is: "case 1..9:".

Rev. 03 281

The "switch" statement shifts the sequence control to a "case" clause if a value from the list corresponds to the
value of the "switch" expression.

The "default" clause consists of the "default" keyword and a double point. The "default" clause is optional,
however, if it is specified it must be included as the last entry in the "case" list. The "switch" statement shifts
the sequence control to the "default" clause if none of the "case" clauses comply with the "switch" expression.

Example:

example(n)
{

new a = 0

switch (n)
{

case 0..3:
a = 0

case 4,6,8,10:
a = 1

case 5,7:
a = 2

case 9:
a = 3

default:
a = -1

}

return a
}

14.4.6.15 While (expression) statement

Evaluates the expression and executes the statement if the result of the expression is logical "true". The
program control returns to the expression again once the statement has been executed. The statement is
therefore executed as long as the expression is logical "true".

Example:

example(n)
{

new a = 0

while(n >= 0)
{

a++
}

return a
}

282 Rev. 03

Chapter 14 Device Logic

14.4.7 Functions
A function declaration specifies the name of the function and the formal parameters enclosed in brackets. A
function can also return a value. A functionmust be defined globally, i.e. declared outside of another function
and is globally available.

If the function declaration is followed by a semicolon (instead of a statement), this is a forward declaration of a
function.

The "return" statement sets the return value of the function. For example, the return value of the "sum"
function (see below) is the sum of both parameters. The "return" expression is optional.

sum(a, b)
{

return a + b
}

The arguments of a function are (declared implicitly) local variables for this function. The function call specifies
the values of the arguments. Another example of a complete definition of a function is "leap year" that
indicates "true" or "false" for the relevant year.

leapyear(y)
{

return y % 4 == 0 && y % 100 != 0 || y % 400 == 0
}

Details of the statements used in this example are provided in the chapter "Operators and expressions" on
page 273.

Generally, functions include local variable declarations and consist of a block statement.

Note: In the next example, the "assert" statement prevents negative values for the exponent.

power(x, y)
{

/* returns xy */
assert y >= 0

new r = 1
for (new i = 0; i < y; i++)

r *= x

return r
}

A function can comprise several "return" statements, for example, one is used to quickly terminate a function if
invalid parameters are transferred, or when it becomes apparent that the function has nothing to do. If a
function returns an array, all of the "return" statementsmust return an array with the same number of entries.

14.4.7.1 Function arguments ("call-by-value" versus "call-by-reference")

The "faulty" function in the next example has a parameter that is used in the loop to calculate the factorial of
this number. It must be noted that the functionmodifies the argument.

Rev. 03 283

main()
{

new v = 5
new f = faculty(v)

}

faculty(n)
{

assert n >= 0

new result = 1
while (n > 0)

result *= n--

return result
}

Regardless of what (positive) value the "n" variable has at the start of the "while" loop, "n" will equal zero at
the end of the function. In the "faculty" function, for example, the parameter is transferred as a value ("by
value"), whichmeans that changes to the "n" variable are only valid locally in the "faculty" function. In other
words, the "v" variable in the "main()" function has the same value before and after the function is called up.

Arguments can be transferred as a value ("by value") or as a reference ("by reference"). A function argument
that is to be transferred as a referencemust have the "&" prefix preceding the name. The arguments are
transferred to the function as a value by default.

Example:

swap(&a, &b)
{

new temp = b
b = a
a = temp

}

To transfer an array to a function, add a pair of brackets ("[]") to the name of the argument. The number of
entries can also be specified. This improves the error detection of the compiler's parser.

Example:

addvector(a[], const b[], size)
{

for (new i = 0; i < size; i++)
a[i] += b[i]

}

Arrays are always transferred as a reference.

Note: The "b" array in the above-mentioned example is not changed in the function. This function
argument was declared as a "const" to make this explicit. In addition to the improved error detection, it
also enables the compiler to generate amore efficient code.

284 Rev. 03

Chapter 14 Device Logic

The following code example calls up the "addvector" function and adds five to each element of the "vect"
variables:

new vect[3] = [1, 2, 3]

addvector(vect, [5, 5, 5], 3)

/* vect[] now comprises the values 6, 7 and 8 */

14.4.7.2 Named parameters versus fixed parameters

In the previous examples, the order of the parameters in a function call were important as each parameter
was copied to the same position of the function parameter. For example, in the "weekday" function (defined
below), the expression "weekday(12 ,31, 1999)" would be used to get the weekday of the last day of the last
century.

weekday(month, day, year)
{

/* returns the day of the week: 0=Saturday, 1=Sunday, etc. */
if (month <= 2)

month += 12, --year

new j = year % 100
new e = year / 100
return (day + (month+1)*26/10 + j + j/4 + e/4 - 2*e) % 7

}

The date format changes depending on the culture and country, while the USA use themonth/day/year
format, European countries frequently use the day/month/year format and technical publications use the
year/month/day (ISO/IEC 8824) format. In other words, the sequence of the parameters is not "standardised"
or "normal". For this reason, there is an alternative way of transferring parameters to a function, by using
"named parameters". These are illustrated in the next example (the function was declared in the sameway as
the previous example).

new wkday1 = weekday(.month = 12, .day = 31, .year = 1999)
new wkday2 = weekday(.day = 31, .month = 12, .year = 1999)
new wkday3 = weekday(.year = 1999, .month = 12, .day = 31)

In "named parameters", a dot (".") precedes the name of the argument. The argument of the function can be
set to any expression that is valid for the argument. In the event of a named parameter, the equals sign ("=")
does not refer to an allocation but instead links the expression with a function argument.

Fixed and named parameters can bemixed together, although the fixed parametersmust be specified before
the named parameters.

14.4.7.3 Standard values of function arguments

A function argument can have a standard value. The standard value of a function argument must be a
constant. To specify a standard value, add an equals sign ("=") and the value to the name of the parameter.

The standard value is adopted if a placeholder is specified instead of a valid function parameter during a
function call. The placeholder is the underscore character ("_"). The argument placeholder is only valid for
parameters with a standard value.

The right argument placeholders can be removed from the list of arguments.

Rev. 03 285

For example, if the "increment" function is defined as follows:

increment(&value, incr=1)
{

value += incr
}

The following function calls are all the same:

increment(a)
increment(a, _)
increment(a, 1)

Standard values for arguments that are transferred as a reference are helpful in making these parameters
optional. For example, if the "divmod" function waswritten to return the quotient and the rest as a parameter.

divmod(a, b, "ient=0, &remainder=0)
{

quotient = a / b
remainder = a % b

}

Based on the previous definition of the "divmod" function, the following function calls are all valid:

new p, q

divmod(10, 3, p, q)
divmod(10, 3, p, _)
divmod(10, 3, _, q)
divmod(10, 3, p)
divmod 10, 3, p, q

The next example adds the value of an array to another one. The values of the array are increased by one if
only one parameter is specified:

addvector(a[], const b[] = {1, 1, 1}, size = 3)
{

for (new i = 0; i < size; i++)
a[i] += b[i]

}

14.5 Differences to C
l The input mechanism of C is not present. It is an "integer-only" variant of C. There are no structures or
unions. Floating point support must be implemented with user-defined operators and the help of native
functions.

l The syntax for floating point values is stricter than that in C. In contrast to C, values such as ".5" and "6."
are not accepted. It ismandatory to write "0.5" and "6.0". The decimal point is optional in C. If an
exponent is included, then you can write "2E8" in C. The capital letter "E" is not accepted. Use the
lower case letter "e". In addition, it requires a comma: e.g. "2.0e8" (see "Numerical constants" on page
269).

286 Rev. 03

Chapter 14 Device Logic

l "pointers" are not supported. A "reference" argument to transfer function parameters as a reference
(see "Function arguments ("call-by-value" versus "call-by-reference")" on page 283) is included.. The
"placeholder" argument replaces some applications of the ZEROpointer (see "Standard values of
function arguments" on page 285).

l Numbers can be specified in a hexadecimal, decimal or binary format. The octal format is not
supported (see "Numerical constants" on page 269). Hexadecimal numbersmust start with "0x" ("x" in
lower case). The prefix "0X" is invalid.

l "Cases" in a "switch"-statement are not "fall through". At least one statement must follow the "case"
label. Youmust create a composite statement (with {}) to execute several statements (see "switch
(expression) {case list}" on page 281). The "switch" statement should be considered as a structured
"if". However, in C/C++ the "switch" statement is a "conditional goto".

l A "break" statement only terminates loops. In C/C++, the "break" statement also terminates a "case" in
a "switch" statement.

l "array assignments" are supported with the limitation that both of the arraysmust be the same length.
For example, if "a" and "b" arrays have six lines, the expression "a=b" is valid. In addition to character
strings, literal arrays and thus expressions such as "a = {0,1,2,3,4,5}" are also supported where "a" is
an array variable with six elements.

l "defined" is an operator and not a preprocessor directive. The "defined" operator workswith constants
(declared with "const"), global variables, local variables and functions.

l The "sizeof" operator returns the size of the variables in "elements" and not in "bytes". An element is an
entry or sub-array. Further details are provided in the chapter "Other" on page 276.

l An empty statement is an empty block (with {}) and not a semicolon (see "Composite statements" on
page 278). This change prevents frequent errors.

l A division is completed in such a way that the remainder of the division has (or ought to have) the same
prefix as the denominator. Divisions (operator "/") are always rounded down to the smaller whole
number (whereby -2 is smaller than -1). For example, 5/2 = 2 (2.5 is rounded down to 2), -5/2 = -3 (-2.5
is rounded down to -3). The "%" operator always generates a positive result regardless of the prefix of
the numerator (see "Operators and expressions" on page 273).

l There is no unary "+" operator as it is a "no-operation" operator anyway ("a = +1" is not valid; correct: "a
= 1").

l Three bit by bit operators have different priorities than in C. The priority level of the "&", "^" and "|"
operator is higher than the relational operators. Dennis Ritchie explains that these operators were
assigned a low priority level in C as early C compilers did not yet include the logical "&&" and "| |"
operators so that bit by bit "&" and "|" were used instead.

l The keyword "const" implements the "enum" functionality of C.

Rev. 03 287

l In most cases, the forward declarations of functions (i.e. prototypes) are not necessary as a two-pass
compiler is used. It detects all of the functions during the first cycle and uses them during the second.
User-defined operatorsmust however be declared before use. If available, forward declarationsmust
be exactly the same as the definition of the function. The parameter names in the prototypes and the
definitions of the functionsmust be identical. Due to the "named parameter" function, the parameter
names in the prototype are of significance. Prototypes are used to call up the forward declared
functions. To use these with the named parameters during this process, the compiler must already
know the names of the parameters (and their position in the parameter list). The parameter names in
the prototypesmust thereforematch those in the definitions.

l Variables are automatically initialised using „0“. It is therefore not necessary to explicitly set them to „0“.

288 Rev. 03

Chapter 15 Data Descriptor
The basic principle of themyDatalogEASY IoT is "storage-2-storage" data transmission. For this type of data
transmission, neither themyDatalogEASY IoT nor the server must know about the logical content of the data
blocks. Therefore, the only aim is to transport a block of data fromA to B.

The data transferred from themyDatalogEASY IoT to the sever can therefore be selected freely. There are
1023 Byte available per data record that can be used as required. There are also another 10 independent
memory blocks each with 4000 Bytes for the configuration data that can be used as required.

The content of the data block or configuration blockmust be described on the server so that the data and
configurations received from themyDatalogEASY IoT can also be used within themyDatanet interface
(reports, visualisations, graphics, etc.). The Data Descriptor contains the tool for describing the data aswell
as the correct provision of the data for use within the interface.

15.1 Data structure
The following containers are available for the different types of data (measurement data, configurations,
etc.):

l Measurement data: "#histdata0" - "#histdata9"
l Configurations: "#config0" - "#config9"
l Configurations only available on the server: "#configA" - "#configC"
l Alarm messages: #alerts
l Aloha data: #aloha

This section describes how the structuredmeasurement data channels ("#histdata0" - "#histdata9"),
configurationmemory blocks ("#config0" - "#config9") and the aloha data ("aloha") are split into individual data
fields for use on themyDatanet server. The structure of the alarmmessages ("#alerts") is fixed firmly in the
system and does not need to be specified/cannot be changed by the user.

Important note: If a structuredmeasurement data channel, a configuration block or the aloha data
are to be available on themyDatanet server or via the REST API then all data fields need to be
defined bymeans of the Data Descriptor .

An extended example, in whichmost of the available attributes are used, is provided in chapter "Example" on
page 297.

Rev. 03 289

15.1.1 Division of a structured measurement data channel into individual data
fields
#histdata0 Measurements up
BatVoltage s16 title="Battery Voltage" decpl=2 units="V" vscale=0.001
InputVoltage s16 title="USB Voltage" decpl=2 units="V" vscale=0.001

The first line in the example above specifies the container to be used for themeasurement data:

#histdata0: Themeasurement data should be stored in histdata channel 0.
Measurements: "Measurements" should be used as the name for the histdata channel.
up: The data is only transmitted from the device to the server.

Note: After specifying the direction of transmission other attributes (e.g. "title") could be added.

The second line in the example above describes the first measurement value in themeasurement data
container used:

BatVoltage: "BatVoltage" should be used as the name for themeasurement value.
s16: The data type used for themeasurement value should be a 16-bit signed integer.
title: Name of themeasurement value that is displayed on the server
decpl: Number of decimal places that should be displayed
units: Unit of themeasurement value that is displayed on the server
vscale: Virtual scaling of the value (see "Attributes of the field definition" on page 292)

Note: Name and data typemust always be specified. Attributes are optional. Further attributes can
also be added.

The third line in the example above describes the secondmeasurement value in themeasurement data
container used.

290 Rev. 03

15.1.2 Division of a configuration memory block into individual data fields
#config0 BasicCfg down title="Basic configuration"
RecordItv u32 title="Record Interval" units="sec" min=10 default=10
TransmissionItv u32 title="Transmission Interval" units="min" min=10 default=60

The first line in the example above specifies the container to be used for the configuration:

#config0: The parameters should be stored in configurationmemory block 0.
BasicCfg: "BasicCfg" should be used as the name for the configurationmemory block.
down: The configurationmemory block is only transmitted from the server to the device.
title: Name of the configuration section that is displayed on the server

Note: Name and direction of transmissionmust always be specified. Attributes are optional. Further
attributes (e.g. "edit" or "view") can also be added.

The second line in the example above describes the first parameter in the configurationmemory block:

RecordItv: "RecordItv" should be used as the name for the parameter
u32: The data type used for the parameter should be a 32-bit signed integer.
title: Name of the parameter that is displayed on the server
units: Unit of the parameter that is displayed on the server
min: smallest valid value for the parameter
default: Default value for the parameter

Note: Name and data typemust always be specified. Attributes are optional. Further attributes (e.g.
"vscale") can also be added.

The third line in the example above describes the second parameter in the configurationmemory block.

Rev. 03 291

15.1.3 Division of the aloha data into individual data fields
#aloha up
BatVoltage s16 title="Battery Voltage" decpl=2 units="V" vscale=0.001
InputVoltage s16 title="USB Voltage" decpl=2 units="V" vscale=0.001

The first line in the example above specifies the container to be used for the aloha data:

#aloha: Themeasurement data should be stored in the aloha data container.
up: The data is only transmitted from the device to the server.

Note: After specifying the direction of transmission other attributes (e.g. "title") could be added.

The second line in the example above describes the first measurement value in the aloha data container
used:

BatVoltage: "BatVoltage" should be used as the name for themeasurement value.
s16: The data type used for themeasurement value should be a 16-bit signed integer.
title: Name of themeasurement value that is displayed on the server
decpl: Number of decimal places that should be displayed
units: Unit of themeasurement value that is displayed on the server
vscale: Virtual scaling of the value (see "Attributes of the field definition" on page 292).

Note: Name and data typemust always be specified. Attributes are optional. Further attributes can
also be added.

The third line in the example above describes the secondmeasurement value in the aloha data container
used.

15.1.4 Attributes of the field definition
title

Alpha-numeric. Title of the field. This title is then used in all of the reports, graphics, etc. for this channel.
The length of the title should not exceed 16 characters if possible, otherwise this can cause display
problems on the interface.

units
Alpha-numeric. Units of a value.
The length of the units should not exceed eight characters if possible, otherwise this can cause display
problems on the interface.

bitmask
Hexadecimal, without leading "0x". Bit mask tomask the actual bits to be used out of the data block,
hexadecimal. The extracted value is aligned to the LSB following themasking process.
Example: An u16 field is generated out of two byteswith the 0xF3A7 content. 0FF0 is specified as the
bit mask. The bits are extracted and aligned with the LSB. The subsequent HEX value is therefore
0x3A (=58 decimal).

292 Rev. 03

editmask
Format statements for displaying the field content on the interface of themyDatanet server or input via
the interface of themyDatanet server.

l usable for strings (data type "astr", "nstr", "wstr" and "ustr", however not for "cstr")

Format statements Explanation
"%COLORPICKER%" Creates a button that displays the currently selected colour. When

clicking the button, a dialog field to set the desired colour appears.
The dialog field returns the selected colour as a string in
"RRGGBB" format, with the colour components being specified in
hex.

"%HEX%" Creates an input field in which the string is displayed in hex format.
Each byte of the string is therefore represented by two characters.
For example, the letter 'a' is represented as "61".

"%MASKED%" Creates an input field whose content ismasked with "asterisk"
(e.g. for passwords and tokens). A button (eye icon) for switching
between plain text andmasking is displayed next to the input field.

"%MULTILINE%30%75" Creates a text field with 30 lines and 75 characters per line

Rev. 03 293

l usable for numeric fields (data type "u8", "s8", "f32",)

Format statements Explanation
"%2.x0" Creates an input field in which the numeric value is displayed in

hex format. Each byte of the data type is therefore represented by
two characters. The number after "%"must match the number of
characters required to represent the data type (e.g. '4' for a "u16").

Note:When using this format statement, the "decpl"
attributemust also be set to "-1" (i.e. decpl=-1).

"0=off;1=on" A dropdown list is created in which the text following the "=" is
displayed for each entry instead of the value. Entriesmust be
separated using a ";".

Note: The entriesMUST NOT strart with '+' or '~'
"%CHECKBOX%" A checkbox is created.

1 = tick set
not equal to 1 = tick not set

Note: If the checkbox is used to display data and the
device returns a value not equal to 1, the tick is also
displayed as "not set". If the checkbox is used for data
entry and the tick is not set, the checkbox returns 0.

"%CHECKBOX%5;10" A checkbox is created the same as for
editmask="%CHECKBOX%", accept that the values for "tick set"
(in this example 10) and "tick not set" (in this example 5 or not
equal to 10) can be chosen. The note above is also valid in a
similar way.

"%TIME%s%hh:mm:ss" Creates an input field in which the numeric value is displayed in the
specified time format (e.g. hh:mm:ss)

After the segment "%TIME" it must be specified whether the value
is saved in seconds (%s) or in minutes (%m). The time format
follows after this specification. "%hh:mm:ss", %hh:mm" or
"%mm:ss" are possible formats. Caution "%mm:ss" is not valid if
the value is to be saved inminutes (%m).

Note: It is advisable to use the "units" attribute to specify
the time format (e.g. hh:mm:ss) in which the value is
displayed.

294 Rev. 03

l usable for timestamps (data type "stamp32" and "stamp40")

Format statements Explanation
%DATETIMEPICKER% Creates an input field in which the timestamp is displayed as

date/time.When clicking on the input field, a dialog field to select
date and time appears.

decpl
Numeral, integer positive. Number of decimal places that should be displayed.

vscale
Numeral, floating point. Virtual scaling of the value. The extracted value ismultiplied by this factor and
only then can it continue to be used.
This value represents value k from the formula k*x+d.

vofs
Numeral, floating point. Virtual offset of the value. The extracted value ismultiplied by vscale, and vofs
is then added to the value.
This value represents value d from the formula k*x+d.

min
Theminimum value for the subsequent display on the server (e.g. graphic).

max
Themaximum value for the subsequent display on the server (e.g. graphic). This value is used for the
length of the character string in the string (or char) data type. Thismeans that the specification of the
max. value for the string (or char) ismandatory.

chmode
The channel mode. This selected setting affects any further processing and display of the channel in the
individual server modules.
The following channel modes are available:

Mode Name Explanation
1 Digital The channel is processed as a digital channel. To prevent any problems from

occurring, the included value should be 0 or 1.

2 Day
counter

A counter for which the value is reset once daily. This reset must be completed
by the control program.

3 Interval
meter

A meter that is reset every time ameasurement data record is created. This
reset must be completed by the control program.

6
(standard)

Analogue A "simple" measurement value, e.g. the temperature

12 Infinite
meter

A meter for which the value is never reset, e.g. water or electricitymeter

index
Is used for the user-defined sorting of the fields in the selection lists. The standard value for the 1000
channels that are available is -1, which ensures that the channel is hidden.
As soon as a channel is used in the data structure description (a simple field tag with the attribute name
will suffice), the background index value is automatically set to the field index (e.g. index=2 for ch2).
This standard sorting can be overridden by specifying the index field.

Rev. 03 295

view
Numeral, integer positive. Specifies fromwhich user level, the field is visible on the interface of the
myDatanet server.

edit
Numeral, integer positive. Specifies the user level that is required to be able to change the field content
via the interface of themyDatanet server. If this attribute is not specified or if the specified value is lower
than that of the "view" attribute, the user level specified for the "view" attribute is required to change the
field content.
If changing the field content via the REST-API should be prevented, the value for this attributemust be
set to 99.

296 Rev. 03

15.2 Example
#histdata0 Measurements up
Delay u16 title="Delay" units="sec" min=10 max=2000 vofs=10 chmode=3 index=1
Height f32 title="Height" decpl=2 units="cm" min=0 max=2000 vscale=0.01 chmode=6 index=0
Pump u8 view=99 edit=99
@Pump
Pump_MSK u8 dlorw=skip title="Pump" bitmask=$01 min=0 max=1 chmode=1
Info astr.50 title="Info" index=10

The first line specifies the container to be used for themeasurement data:

#histdata0: Themeasurement data should be stored in histdata channel 0.
Measurements: "Measurements" should be used as the name for the histdata channel
up: The data is only transmitted from the device to the server

The second line describes the first measurement value "Delay" in themeasurement data container used:

Delay: "Delay" should be used as the name for themeasurement value.
u16: The data type used for themeasurement value should be a 16-bit unsigned integer

(i.e. 2 bytes).
title: Name of themeasurement value that is displayed on the server
units: Unit of themeasurement value that is displayed on the server
min: Minimum value for the further display on the server (e.g. graphic)
max: Maximum value for the further display on the server (e.g. graphic)
vofs: Virtual offset of the value (see "Attributes of the field definition" on page 292).

In the current example 10 is added to the extracted value.
chmode: Channel mode

3 =^ interval counter (counter that is reset every time ameasurement data record is
created)

index: Is used for the user-defined sorting of the fields in the selection lists

The third line describes the secondmeasurement value "Height" in themeasurement data container used:

Height: "Height" should be used as the name for themeasurement value.
f32: The data type used for themeasurement value should be a 32-bit float (i.e. 4 bytes).
title: Name of themeasurement value that is displayed on the server
decpl: Number of decimal places that should be displayed
units: Unit of themeasurement value that is displayed on the server
min: Minimum value for the further display on the server (e.g. graphic)

Rev. 03 297

max: Maximum value for the further display on the server (e.g. graphic)
vscale: Virtual scaling of the value (see "Attributes of the field definition" on page 292).

In the current example the extracted value ismultiplied by 0.01.
chmode: Channel mode

6 =^ analogue channel (a "simple" measurement value, e.g. the temperature)
index: Is used for the user-defined sorting of the fields in the selection lists

Lines 4-6 describe the third measurement value "Pump" in themeasurement data container used:

Pump: "Pump" should be used as the name for themeasurement value.
u8: The data type used for themeasurement value should be an 8-bit unsigned integer

(i.e. 1 byte).
view: Specifies fromwhich user level the field is visible on the interface of the server

99 =^ field is not visible to anyone (required as in the current example the "Pump_
MSK" shadow field should be used instead of the "Pump" field. Shadow fields can be
used to divide one byte field up into several bit fields).

edit: Specifies the user level that is required to be able to change the field content via the
interface of the server
99 =^ field cannot be changed by anyone (required as in the current example the
"Pump_MSK" shadow field should be used instead of the "Pump" field).

@Pump: Specifies that the "Pump_MSK" shadow field defined in line 6 should use thememory
area of the "Pump" field defined in line 4

Pump_MSK: "Pump_MSK" should be used as the name for the shadow field.
dlorw=skip: The shadow field is not considered for the access functions to the container which are

automatically generated for the device logic (in the current example histdata channel
0). I.e. within the device logic writing/reading of the shadow field must be done via
manual masking of the desired bit in the "Pump" field.

bitmask: Bit mask tomask the actual bits to be used out of the data block, hexadecimal

In the current example, the least significant bit (LSB) ismasked out of the "Pump" field.
min: Minimum value for the further display on the server (e.g. graphic)
max: Maximum value for the further display on the server (e.g. graphic)
chmode: Channel mode.

1 =^ digital

298 Rev. 03

The 7th line describes the fourth measurement value "Info" in themeasurement data container used:

Info: "Info" should be used as the name for themeasurement value.
astr.50: The data type used for themeasurement value should be an ANSI string.

After the dot the number of characters (50 in the current example) are specified.
title: Name of themeasurement value that is displayed on the server
index: Is used for the user-defined sorting of the fields in the selection lists.

index is not specified for "Pump", thus "Pump" automatically receives index 2. The sorting order of the
channels is therefore "Height", "Delay", "Pump", "Info".

15.3 Special values of the data types
Each numerical data type supports special states, such asNAN (Not a Number). If such a value is detected
on the server, the standard display and further processing inmyDatanet is applied.

Value/type u8 (byte) u16 (word) u32 (dword)
NaN 0xFF 0xFFFF 0xFFFFFFFF

OF 0xFE 0xFFFE 0xFFFFFFFE

UF 0xFD 0xFFFD 0xFFFFFFFD

OL 0xFC 0xFFFC 0xFFFFFFFC

SC 0xFB 0xFFFB 0xFFFFFFFB

Overview of the possible values (unsigned):

Value/type s8 (bint) s16(wint) s32 (dint) s64 (qint)
NaN 127 32767 2147483647 0x7FFFFFFFFFFFFFFF

OF 126 32766 2147483646 0x7FFFFFFFFFFFFFFE

UF -126 -32766 -2147483646 0x8000000000000002

OL -127 -32767 -2147483647 0x8000000000000001

SC -128 -32768 -2147483648 0x8000000000000000

Overview of the possible values (signed):

Value/type f32 (float32) f64 (float64)
NaN 0x7F800001 0x7FF0000000000001

OF 0x7F800002 0x7FF0000000000002

UF 0x7F800003 0x7FF0000000000003

OL 0x7F800004 0x7FF0000000000004

SC 0x7F800005 0x7FF0000000000005

Overview of the possible values (float):

Rev. 03 299

Chapter 16 API

Chapter 16 API
Important note: The relevant licences are required on themyDatanet server to use the API
(Application Programming Interface). For future information contact your responsible sales partner.

16.1 Backend API
The API is provided to export data from and import data to themyDatanet server. However, this is not just
limited to the puremeasurement data but includes all of the data provided bymyDatanet server (e.g.
configurations). It is therefore possible for the customer to completely dispense with the interface of the
myDatanet server and to create his own user interface. A specially developed PC program or web interface
can, for example, be used for this purpose.

16.2 rapidM2M Playground
The rapidM2MPlayground enables you to familiarise yourself with the API of themyDatanet server and to
test the provided functions. One click on the "API" button will take you to rapidM2MPlayground .

1 Opens the rapidM2MPlayground

Rev. 03 301

16.2.1 Overview

rapidM2M Playground

1 Input field for the user name

2 Input field for the password

3 List of the available HTTP commands. The HTTP commands are grouped according to their fields of
application.

4 Depending on the selected HTTP command, the drop down lists for selecting the customer, user and
site that should replace the corresponding wild cards ("$CID"...customer , "$UID"...user, "$SID"...site) in
the resource path of the HTTP command are displayed.

5 Button to execute the HTTP command

6 Opens the website "http://rapidm2m.com/" that includes additional information for developers

7 Opens the quick guide for the API

8 Button for displaying themenu that contains the global settings

9 Button to change the colour scheme of the rapidM2MPlayground

10 Window displaying the selected HTTP command

11 Response code sent by themyDatanet server as an answer to the HTTP command

12 Copies the JSON object generated as a response to the HTTP command on to the clipboard

13 Window displaying the documentation for the selected HTTP command. Depending on the selected
command, this includes a description of the action being executed, information that must be observed
and a description of the request body and response body.

14 Window displaying the JSON object that is generated as a response to the HTTP command

15 Window displaying the last executed HTTP commands

302 Rev. 03

Chapter 17Maintenance

Chapter 17 Maintenance
Important note: To prevent any damage to the device, the work described in this section of the
instructionsmust only be performed by qualified personnel.

The devicemust be deenergised before anymaintenance, cleaning and/or repair work.

17.1 General maintenance
l Regularly check themyDatalogEASY IoT for mechanical damage.
l Check all of the connections for leaks or corrosion on a regular basis.
l Check all of the cables for mechanical damage at regular intervals.
l Clean themyDatalogEASY IoT with a soft, moist cloth. Use amild cleaning agent, if necessary.

17.2 Replacing the power supply unit
Important note: A dry locationmust be used to replace the power supply unit. If this is not possible,
protect the opened device against penetratingmoisture using suitablemeans.

How-To-Video: Replacing the PSU and the silica gel pouch

Opening the myDatalogEASY IoT

1 Hexagon socket screw M6x30 3 Housing cover

2 Power supply unit 4 Strap to remove the power supply unit

Rev. 03 303

http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video
http://www.microtronics.com/easy-battery-replacement?utm_source=manual&utm_medium=qr-code&utm_campaign=video

1. Ensure that all of the relevant data was transferred to themyDatanet server. If necessary, initiate a
transmission. To do so, execute the operations provided in the Device Logic and then check again that
all of the relevant data has been transferred.

2. If you are using an external supply or charging voltage, disconnect this from the device before opening
the housing cover.

3. Remove the four screws that secure the housing cover. Now open themyDatalogEASY IoT .

4. Remove the power supply unit from themyDatalogEASY IoT and replace the existing power supply
unit with a new one. Use the strap provided to remove the power supply unit.

Important note: If the pressure compensation has been sealed via the Gas protection set for
myDatalogEASY IoT series (301414) (see "Sealing the pressure compensation" on page 61),
the silica gel pouch also has to be replaced when replacing the PSU.

Note: Ensure that power supply units, especially oneswith integrated energy store
(rechargeable battery or battery), are disposed of in line with environmental requirements.
Power supply units with depleted rechargeable battery or battery can be returned to the
manufacturer or handed in at suitable collection points.

Removing the power supply unit

1 Power supply unit 2 myDatalogEASY IoT base unit

The following step is not mandatory.

5. Checkwhether the connection to themyDatanet functions correctly (see "Testing communication with
the device" on page 97).

6. Close the housing cover. The best option is to tighten the four screws crosswise (torque: max. 1Nm) so
that the housing cover is positioned evenly.

Important note: Ensure that the seals are clean and intact before closing the housing cover.
Remove any impurities and/or dirt. Themanufacturer shall not be liable for any damage to the
device caused by leaky or faulty seals.

304 Rev. 03

Chapter 17Maintenance

7. Check that the housing cover is positioned correctly on all sides and that no foreignmaterials have
been trapped between the housing and housing cover.

Important note: Themanufacturer is not liable for any damage that is caused by housing
covers that are not closed correctly.

The following step is only necessary if you are using an external supply or charging voltage.

8. Now switch on the external supply or charging voltage.

Note: If you are using a power supply unit without an integrated energy store, the external supply or
charging voltagemust be switched on before the optional step during which the connection to the server
is tested.

17.2.1 Charging the power supply unit
All power supply units with an integrated and rechargeable energy store are delivered with amaximum
charge of 30% in accordance with applicable transport regulations. If you use an external charging voltage
(V IN) during operation, the power supply unit is constantly charged by the charge controller integrated in the
myDatalogEASY IoT .

If no external charging voltage (V IN) is available during operation, the power supply unit must be fully
charged before initial use.

For instructions on removing the rechargeable battery, see "Replacing the power supply unit" on page 303.

Important note: Only use the PSU Charger (300697) to charge the power supply units. The
charger specificationsmust be observed. The use of other chargers can destroy the power supply
unit, for example, causing the cells to leak or an explosion, etc.

Rev. 03 305

Charger with power supply unit

1 Plug-in power supply (included in the scope of
delivery of 300697)

4 PSU Charger (300697)

2 Button (reserved for extension) 5 Status LED of the PSU Charger

Possible states of the status LED:

off: no PSU inserted

Flashing green: PSU is being charged

Green: Charging completed

Flashing red 1x every 5 seconds: PSU does not
contain a rechargeable energy store

Flashing red 2x every 5 seconds: PSU damaged

Flashing red 3x every 5 seconds: Supply voltage
of the charger is too low

3 Power supply unit e.g. PSU413D+ AP (300524)

The charging process starts as soon as the power supply unit is inserted in the charger. If the status LED on
the charger flashes red once every 5 seconds, the power supply unit inserted in the charger does not contain
a rechargeable energy store. If the status LED flashes red three times every 5 seconds, the supply voltage of
the charger is too low. In this case, check the cable connection between the plug-in power supply and the
PSU Charger and checkwhether the plug-in power supply is correctly connected to an electric socket. If the
status LED flashes green, a normal charging process is in progress. The charging process is complete when
the status LED turns green.

306 Rev. 03

Chapter 17Maintenance

If the status LED flashes red twice every 5 seconds, the power supply unit is faulty. Possible reasons for this
include a broken cable, short circuit or defective cells. In this case, the used power supply unit must be
replaced with a new one.

Note: Rechargeable batteries are wear parts that lose capacity over time. The capacity is also reduced at high
or low ambient temperatures and under intensive use.

Note: Ensure that power supply units, especially oneswith integrated energy store (rechargeable
battery or battery), are disposed of in line with environmental requirements. Power supply units with
depleted rechargeable battery or battery can be returned to themanufacturer or handed in at suitable
collection points.

17.3 Power supply units with integrated energy store
While power supply units with integrated batteries (e.g. PSU713 BP) are intended for single use andmust be
disposed of accordingly after depletion, power supply units with integrated rechargeable batteries (e.g.
PSU413D+ AP) can be recharged and used again and again. However, the service life of rechargeable
batteries is not indefinite. In addition to regular servicing andmaintenance, its service life is also dependent on
the frequency of use and the operating and storage conditions.

Rev. 03 307

Chapter 18 Removal/disposal

Chapter 18 Removal/disposal
Incorrect disposal can cause environmental hazards.

Dispose of the device components and packagingmaterial in accordance with the locally valid environmental
regulations for electronic products.

1. Disconnect any charging voltage that has been used.
2. Remove the power supply unit with the integrated energy storage (rechargeable or non-rechargeable

battery) and dispose of it separately.
3. Disconnect any connected cables using a suitable tool.

Logo of the EU WEEE Directive

This symbol indicates that the requirements of Directive 2012/19/EU regarding the scrap disposal
of waste from electric and electronic equipment must be observed. Microtronics Engineering
GmbHsupports and promotes recycling and environmentally friendly, separate collection/disposal
of waste from electric and electronic equipment in order to protect the environment and human
health. Observe the local laws and regulations on disposal of electronic waste at all times.

Microtronics Engineering GmbHreleases goods brought onto themarket in Austria from the
obligations via ERA, whichmeans that collection points that cooperate with ERA Elektro
Recycling Austria GmbH (https://www.era-gmbh.at/) can be used for disposal in Austria.

The device contains a lithium button cell that has been soldered on. It must be
removed before disposal or the disposal service must be informed that batteries are
still located in the device.

Rev. 03 309

https://www.era-gmbh.at/
https://www.era-gmbh.at/

Chapter 19 Troubleshooting and repair

Chapter 19 Troubleshooting and repair

19.1 General problems
Problem Cause/solution

Device does not
respond.

l Check the cable connections (see "Connecting the sensors, actuators and
power supply" on page 70)

l The capacity of the energy store in the power supply unit is depleted.

Communication
problems

l Load the device log from themyDatalogEASY IoT using the DeviceConfig
(see ""Log" tab" on page 118). A list of all the possible error codes is
included in the chapter "Log entries and error codes" (see "Log entries and
error codes" on page 313).

l The capacity of the energy store in the power supply unit is virtually
depleted.

The connection via the
external SIM card is not
working.

l The chargeable feature "Activation code VPN SIM (300539)" has not been
released.

l Checkwhether the external SIM card has been inserted correctly (see
"Inserting/replacing the SIM card" on page 59).

l Checkwhether the configuration data (PIN, APN, username and
password) have been set correctly via the "rM2M_SetExtSimCfg()"
function.

l Checkwhether the configuration data (PIN, APN, username and
password) have been set correctly via the DeviceConfig (see ""GSM" tab"
on page 116).

l Checkwhether the PIN code (if required by the SIM card) has been set
correctly by the DeviceConfig .

Not all or no data is
available on the server.

l The connection was aborted during the transmission, which is indicated by
a time-out entry in the connection list (see "myDatanet Server Manual "
805002). Solution: Initiate a transmission or wait for the next cyclical
transfer.

l TheData Descriptor was not configured correctly (see "Data Descriptor "
on page 289).

l The assignment of the device and site is not correct (see "Site" on page
100).

Data at universal input is
not plausible.

l Check the cable connections (see "Connecting the sensors, actuators and
power supply" on page 70)

l Checkwhether the output signal from the sensor that you are using is
compatible with the electrical characteristics of the universal inputs (see
"Technical details about the universal inputs" on page 84).

l Checkwhether the universal input configurationmatches the sensor output
signal (see "UI_Init()").

l Check the filter settings of the universal input (see "UI_Init()")).
l TheData Descriptor was not configured correctly (see "Data Descriptor "
on page 289).

Rev. 03 311

Problem Cause/solution
Themeasurement
values of the external
temperature sensor are
not plausible.

l The chargeable feature "Activation code temperature input(300542)" has
not been released.

l Check the cable connections (see "Connecting the sensors, actuators and
power supply" on page 70)

The data of the RS485
interface is not plausible.

l The chargeable feature "Activation code RS485 (300540)" has not been
released.

l Check the cable connections (see "Connecting the sensors, actuators and
power supply" on page 70)

l Checkwhether the sensor that you are using is compatible with the
electrical characteristics of the interface (see "Technical details about the
RS485 interface" on page 85).

l Checkwhether the interface configurationmatches the sensor output
signal (see "RS485_Init()").

l Check the settings of the load resistance (see "RS485_Init()").

The data of the RS232
interface is not plausible.

l The chargeable feature "Activation code RS232 (300541)" has not been
released.

l Check the cable connections (see "Connecting the sensors, actuators and
power supply" on page 70)

l Checkwhether the sensor that you are using is compatible with the
electrical characteristics of the interface (see "Technical details about the
RS232 interface" on page 86).

l Checkwhether the interface configurationmatches the sensor output
signal (see "RS232_Init()").

Isolated switch contact is
not working.

l Disruption to the voltage that is conducted via the relays

The Device Logic is not
being executed
correctly.

l Check that the correct Device Logic type was selected during the
configuration of the control (see "Control" on page 101).

l Load the device log from themyDatalogEASY IoT using the DeviceConfig
(see ""Log" tab" on page 118). A list of all the possible Device Logic error
codes is included in the chapter "Pawn script error codes" (see "Device
Logic error codes" on page 264).

l The previousDevice Logic has been replaced with that of the newly
assigned site/application due to a context change (assignment of a different
site/application).

l By assigning a new or different site/application, the Device Logic installed
via the USB has been replaced with that of the newly assigned
site/application.

312 Rev. 03

Chapter 19 Troubleshooting and repair

19.2 Log entries and error codes
Log entry Parameter DescriptionCode Plain text Code Plain text

1000 POWER ON 0 --- Restart following a power failure

4 --- Watchdog reset (e.g. because of an exception)

6 --- Reset was initiated by the device itself (e.g. in
event of firmware update)

-- Restart for another reason. Theremay be a
hardware problem if the "POWER ON" log entry
with a parameter code that is not equal to 0 or 6
is contained in the device log several times.
Contact themanufacturer in this case (see
"Contact information" on page 335).

1030 UV LOCKOUT --- --- The device switches to energy savingmode and
terminates all of the operations as the
rechargeable battery or battery voltage is too
low. Only the charge controller, if present,
remains active.

1031 UV RECOVER --- --- The rechargeable battery or battery voltage once
again suffices to guarantee reliable operation.
This is either achieved by replacing the
rechargeable battery or battery pack or by
ensuring that the charge controller has charged
the battery sufficiently. The device resumes
normal operation in accordance with the
configuration.

1034 CONTROLLER
UPDATE

--- Controller firmware update was completed
successfully

This entry is always duplicated in the device log.
In the first entry, the parameter specifies the
major version number (e.g. 3 for 03v011), while
in the second entry it specifies the minor version
number (e.g. 11 for 03v011).

1035 EXCEPTION ## --- An internal system error was detected that
caused the device to restart. The parameter
specifies the type of system error. Contact the
manufacturer if the device log contains this error
with the same parameter code several times
(see "Contact information" on page 335).

1038 UVMODEM
LOCKOUT

--- --- The device deactivates themodem because the
rechargeable battery or battery voltage is too
low. A connection cannot be established now.

Rev. 03 313

Log entry Parameter DescriptionCode Plain text Code Plain text
1039 UVMODEM

RECOVER
--- --- The rechargeable battery or battery voltage once

again suffices to guarantee a stable connection.
This is either achieved by replacing the
rechargeable battery or battery pack or by
ensuring that the charge control has charged the
battery sufficiently.

1161 LOG
REFORMATFILE

--- Errors in file system have been resolved. This
can result in data being lost (data and/or log
entries). The parameter containsmore
information on the problem. Contact the
manufacturer if the device log contains this error
with the same parameter code several times
(see "Contact information" on page 335).

1192 FUTURE
TIMESTAMP

--- Internal error

Contact themanufacturer if the device log
includes this error several times (see "Contact
information" on page 335).

1200 MODEMERROR Modemerror (see "Modem error" on page 318)

1201 MODEMNOT
FOUND

--- Internal error

Contact themanufacturer if the device log
includes this error several times (see "Contact
information" on page 335).

1202 MODEMCMME
ERROR

--- TheGPRSmodem indicates a +CME error. The
parameter specifies the type of error.

1203 SELECTED
NETWORK

--- A new GSMnetwork was selected.

The parameter specifies theMCC (Mobile
Country Code) and theMNC (Mobile Network
Code) of the selectedGSMnetwork.

1207 GSMNETWORK
REGISTRATION

0 NOTREGISTERED Not registered, modem is currently not looking
for any new operators to register

1 HOME Registered, home network

2 SEARCHING Not registered, but themodem is currently
looking for a new operator with which it can
register

3 DENIED Registration denied

4 UNKNOWN Unknown (e.g. outside theGERAN/UTRAN/E-
UTRAN cover)

5 ROAMING Registered, roaming

314 Rev. 03

Chapter 19 Troubleshooting and repair

Log entry Parameter DescriptionCode Plain text Code Plain text
1208 GPRS NETWORK

REGISTRATION
0 NOTREGISTERED Not registered, modem is currently not looking

for any new operators to register

1 HOME Registered, home network

2 SEARCHING Not registered, but themodem is currently
looking for a new operator with which it can
register

3 DENIED Registration denied

4 UNKNOWN Unknown (e.g. outside theGERAN/UTRAN/E-
UTRAN cover)

5 ROAMING Registered, roaming

1212 ERRORMODEM
IRREGULAR OFF

--- Indicates a faulty connection. The parameter
includes a counter that indicates how many
consecutive connections have not worked.

1219 LTE NETWORK
REGISTRATION

0 NOTREGISTERED Not registered, modem is currently not looking
for any new operators to register

1 HOME Registered, home network

2 SEARCHING Not registered, but themodem is currently
looking for a new operator with which it can
register

3 DENIED Registration denied

4 UNKNOWN Unknown (e.g. outside theGERAN/UTRAN/E-
UTRAN cover)

5 ROAMING Registered, roaming

1252 MODEMTOCON ## --- Timeout while a connection is being established.
The parameter specifies the reason for the
timeout. Contact themanufacturer if the device
log contains this error with the same parameter
code several times (see "Contact information" on
page 335).

1281 ZLIB
STREAMPROCESS
ERR

--- Internal error

Contact themanufacturer if the device log
includes this error several times (see "Contact
information" on page 335).

1282 ZLIB
STREAMFINISH
ERR

--- Internal error

Contact themanufacturer if the device log
includes this error several times (see "Contact
information" on page 335).

1300 USB CONNECTED --- --- USB connection to a PC established.

1310 USB
DISCONNECTED

--- --- USB connection was disconnected.

Rev. 03 315

Log entry Parameter DescriptionCode Plain text Code Plain text
1317 BLE CONNECTED --- --- Bluetooth connection to a PC established

1318 BLE
DISCONNECTED

--- --- Bluetooth connection was terminated

1335 LOG_SHT2X_
STATE

0 SHT2X SENSOR
OK

The internal temperature and air humidity sensor
is returning valid values again

1 SHT2X RH ERROR A communication error occured when reading
the air humidity value from the internal
temperature and air humidity sensor.

2 SHT2X TEMP
ERROR

A communication error occured when reading
the temperature value from the internal
temperature and air humidity sensor.

3 SHT2X RH+TEMP
ERROR

A communication error occured when reading
themeasurement value from the internal
temperature and air humidity sensor.

4 SHT2X
PLAUSIBILITY
ERROR

The values received from the internal
temperature and air humidity sensor are not
plausible (rH <0% rH or >100% rH or
temperature <-40°C or >125°C)

1336 SHT2X COMERR --- --- Communication with the internal temperature
and air humidity sensor is not possible (sensor
not present or faulty)

1337 SHT2X COMERR1 --- --- Starting the internal temperaturemeasurement
failed

1338 SHT2X COMERR2 --- --- Starting the internal air humiditymeasurement
failed

1339 SHT2X TEMP RAW ## --- Temperature raw value (register value from the
internal temperature and air humidity sensor) if a
plausibility error (SHT2X PLAUSIBILITY
ERROR) was detected

1340 SHT2X RH RAW ## --- Air humidity raw value (register value from the
internal temperature and air humidity sensor) if a
plausibility error (SHT2X PLAUSIBILITY
ERROR) was detected

1601 SIM_STATE 0 NONE SIM state was changed to "NONE" (initial state).

1 PRODUCTION SIM state was changed to "PRODUCTION" (a
new device is in stock).

2 HOT SIM state was changed to "HOT" (valid contract).

3 COLD SIM state was changed to "COLD" (end of
contract or fair use policy violated).

4 DISCARDED SIM state was changed to "DISCARDED"
(device has been decommissioned).

316 Rev. 03

Chapter 19 Troubleshooting and repair

Log entry Parameter DescriptionCode Plain text Code Plain text
1602 EXTERNALSIM -2 NOT ALLOWED Establishing the connection via the external SIM

card is not permissible

l NoAPN settings (APN, username and
password) saved in the device

l Use of the external SIM slot is not released

-1 NOT FOUND The external SIM card is not present or could not
be accessed.

0 OK The external SIM card could be accessed when
establishing the connection. However, this log
entry does not indicate whether the connection
itself was established successfully.

1910 ACCU 0E2PROM
ERROR

0 --- Rechargeable battery not available

1 --- Invalid length of the data structure in the
EEPROMof the rechargeable battery

2 --- No charging profile available in the EEPROM
(only with Li-ion rechargeable batteries)

3 --- Error when reading the SoC-value

4 --- Error when writing the SoC-value

5 --- The charging profiles of the rechargeable
batteries inserted do not match (only with
devices that support the simultaneous use of
multiple rechargeable batteries)

6 --- l Permissible charging time exceeded
l When restarting the device, it was
recognised that the rechargeable battery
currently in use has already exceeded the
permissible charging time once.

The battery is probably defective and should be
checked by themanufacturer.

2000

-

2199

MODULE ERR ## --- Area for customer-specific critical error codes,
that can be written in the device log bymeans of
the "rM2M_WriteLog()" function

2200

-

2399

MODULE
WARNING

--- Area for customer-specific non-critical error
codes, that can be written in the device log by
means of the "rM2M_WriteLog()" function

2400

-

2599

MODULE INFO ## --- Area for customer-specific information about the
current operating state, that can be written in the
device log bymeans of the "rM2M_WriteLog()"
function

Rev. 03 317

Log entry Parameter DescriptionCode Plain text Code Plain text
2600

-

2799

MODULE DEBUG ## --- Area for customer-specific debug information,
that can be written in the device log bymeans of
the "rM2M_WriteLog()" function

3000

-

3099

SCRIPT ERROR ## -- Error codes of the script execution (see "Device
Logic error codes" on page 264).

19.2.1 Modem error

Log entry Parameter DescriptionCode Plain text Code Plain text
External SIM card

1200 SIMPIN NO
ATTEMPT

-999 --- The PIN code transferred to the system via the
"rM2M_SetExtSimCfg()" function is not correct.
Another input attempt is not made to ensure the
SIM card is not locked.

1200 SIMERROR -998 --- Error when accessing the external SIM card

l SIM card not recognised.
l Use of the external SIM slot is not released

GPRS error

1200 BEARER GPRS
FAILED

-988 --- GPRS setup error

l Try to improve the position of the antenna.
l Checkwhether the device is in the
coverage area
(www.microtronics.com/footprint).

1200 BAND SEL FAILED -969 --- A network could not be found on the
GSM900/1800 or on theGSM850/1900 band.

l Try to improve the position of the antenna.
l Checkwhether the device is in the
coverage area
(www.microtronics.com/footprint).

External SIM card

1200 SIMPIN WRONG -968 --- The PIN code transferred to the system via the
"rM2M_SetExtSimCfg()" function is not correct.

SIMNOPIN -967 --- No PIN code was transferred to the system via
the "rM2M_SetExtSimCfg()" function. However,
the SIM card requires a PIN code to be entered.

318 Rev. 03

Chapter 19 Troubleshooting and repair

Log entry Parameter DescriptionCode Plain text Code Plain text

1200 NETLOCK ERROR -966 Error when selecting the network. Check
whether the device is in the coverage area.

Internal SIM chip: see
www.microtronics.com/footprint

External SIM card: Contact the provider that
supplied the SIM card.

TCP channel error

1200 CHANNEL
ABORTED

-965 --- An attempt is beingmade to write to/read a TCP
client that is no longer available.

Try again later

TCP DNS FAILURE -958 --- The name could not be resolved in an IP
address.

Internal error

CHANNEL
REFUSED

-955 --- The TCP connection has been refused by the
server.

Try again later

CHANNELHOST
UNREACHABLE

-954 --- No route to the host.

Try again later

CHANNEL
NETWORK
UNREACHABLE

-953 --- No network available

Try again later

CHANNELPIPE
BROKEN

-952 --- TCP connection interrupted

Try again later

CHANNEL
TIMEOUT

-951 --- Timeout (DNS request, TCP connection, ping
response, etc.)

Try again later

MODEMPOSITION
UPDATE ERROR

-943 --- Timeout during determination of the GSM
position data

Rev. 03 319

19.3 Evaluating the device log

19.3.1 Evaluating the device log on the myDatanet server
The last 300 log entries on themyDatanet server can be called up via the button shown below that is located
in themeasurement device list. As the log entries are sent to the server in the transmission cycle in the same
way as themeasurement data, only the log entries up to the last server connection are available.

Themanual for the server ("myDatanet Server Manual " 805002) includes a detailed description of the
evaluation of the device log on themyDatanet server.

19.3.2 Evaluating the device log using DeviceConfig
TheDeviceConfig program can be used to read all of the stored log entries, including those that have not yet
been transferred to themyDatanet server, directly from themyDatalogEASY IoT via the USB interface or
the Bluetooth interface.

A more detailed description about the evaluation of the device log using DeviceConfig is included in chapter
""Log" tab" on page 118.

320 Rev. 03

Chapter 20 Spare parts and accessories

Chapter 20 Spare parts and accessories

20.1 Order options
Note: The following components are order options. They cannot be ordered separately or installed
by the customer.

Description Quantity Order number
Power supply 24V 0,63A for top-hat rail mounting 1) 1 301066

Top-hat rail DIN for myDatalogEASY IoT 1 301070

SDI-12 interface extension for myDatalogEASY IoT 1 301400

RS485 interface extension for myDatalogEASY IoT 1 301401

Contact junction for myDatalogEASY IoT1) 3 301402

Electrical bonding and cable support for myDatalogEASY IoT 1 301403

Display 1,5'' full colour OLED for myDatalogEASY IoT 1 301405

myDatalogEASY IoT GPS extension 1 301068

1) The Top-hat rail DIN for myDatalogEASY IoT (301070) is also required to install this order option in the
myDatalogEASY IoT .

20.2 Chargeable features
Description Quantity Order number

Order option (feature is activated by themanufacturer prior to delivery)

Feature activation VPN SIM 1 300729

Feature activation RS485 1 300730

Feature activation RS232 1 300731

Feature activation temperature input 1 300732

Feature activationg BLE 1 300972

Activation code (for later activation by the customer)

Activation code VPN SIM 1 300539

Activation code RS485 1 300540

Activation code RS232 1 300541

Activation code temperature input 1 300542

Activation code BLE 1 300968

20.3 Compatible IoT apps
Description Quantity Order number

IoT App 4-Channel Data Logger 1 301370

Rev. 03 321

20.4 Assembly sets
Description Quantity Order no.

Housing for outdoor installation 300x200x150mm 1 301173

Pipemounting set for housing 300x200x150mm 1 301184

Wall mounting set for housing 300x200x150mm 1 301185

Pipemounting EASY IoT 30-250mm 1 301191

Niro shackle 1 206.325

Anchor clamp 5,5 - 10,5mm 1 301017

20.5 Antennas
Description Quantity Order no.

Portable antennamulti band FME-F 1 206.826

Flat antenna Discmulti band 2xFME-F 2m 1 301196

Dome antennamulti band FME-F 3m 1 301211

Extension cable for antenna FME-F/FME-M 5m 1 206.805

20.6 Power supply units
Description Quantity Order number

Battery packs

PSU713 BP (Li-SOCl2; 13Ah; -20...+50°C operating temperature) 1 300526

Rechargeable battery packs

PSU413D+ AP (Li-Ion ; 13,6Ah; -20...+60°C operating, -20...+60°C
charging temperature)

1 300524

PSU413D AP (Li-Ion ; 13,2Ah; -20...+60°C operating, 0...+40°C charging
temperature)

1 300525

Direct supply

PSU DC (-20...+60°C operating temperature) 1 300529

PSU DC+ (Li-Po ; 900mAh; -20...+60°C operating, 0...+40°C charging
temperature)

1 300798

20.7 Solar panel
Description Quantity Order no.

PVmodule 30W for myDatalogEASY IoT series 1 301172

322 Rev. 03

Chapter 20 Spare parts and accessories

20.8 Charging devices and power supply units
Description Quantity Order number

Power supply 24V 1A 1 213.814

Power supply 12V 1,25A 1 206.623

Snap-on primary plug EU for chargers/power supplies 1 300027

Snap-on primary plug UK for chargers/power suppliest 1 300028

Snap-on primary plug US for chargers/power supplies 1 300029

Snap-on primary plug AUS for chargers/power supplies 1 300030

PSU Charger 1 300697

Power supply housing 1 301442

20.9 BLE sensors
Description Measurement range Quantity Order no.

BLE Gauge pressure sensor 0-3m 9W 0-3m 1 300893+300871

BLE Gauge pressure sensor 0-1m 9W 0-1m 1 300893+300872

BLE Gauge pressure sensor 0-10m 9W 0-10m 1 300893+300891

20.10 BLE output modules
Description Quantity Order no.

BLEmA Link 1 300870

20.11 Other accessories
Description Quantity Order number

myDatanet Tool Pen 1 206.646

MDN Magnet 1 206.803

USB BLE-Adapter 1 300685

Gas protection set for myDatalogEASY IoT series 1 301414

Rev. 03 323

Chapter 21 Document history

Chapter 21 Document history
Rev. Date Changes
01 18.03.2020 First version

02

(1/6)

14.04.2023

(1/6)

Chapter "Declaration of conformity" on page 15
Declaration of Conformity updated

Chapter "Specifications" on page 19
Protective circuit integrated in the PSU DC and PSU DC+ specified in more detail
Overvoltage protection integrated in the PSU413D AP and PSU413D+ AP
specified in more detail
Protection class adjusted from IP66 to IP66 / IP68
Information regarding the LPWAN Transceiver module removed, as the data
transmission via LPWAN is no longer supported.
Specifiedmax. size of a data record adjusted from 1024bytes to 1023bytes
Specified system-related overheads per data record adjusted from 10bytes to
11bytes
Information about the supported frequency bands for themyDatalogEASY IoT
2G/M1/NB1World adjusted.

Chapter "Intended use" on page 28
The data transmission via LPWAN is no longer supported.
Explanation extended to include that the Bluetooth interface is also available for
measurement data acquisition.

Chapter "General product information" on page 28
Explanation extended to include that the Bluetooth interface is also available for
measurement data acquisition.
The data transmission via LPWAN is no longer supported.
The direct data transmission to a customer specific server via "NB-IoT" is no longer
available.
Note added indicating that the chargeable feature "Activation code BLE (300968)"
or the order option "Feature activationg BLE (300972)" is required to read out data
via a Bluetooth connection.

Chapter "Device labelling" on page 30
The order option "Feature activation LPWAN " is no longer available.
Type plate updated

Chapter "Functional principle" on page 35
Figures and explanations adapted so that the Bluetooth interface can also be used
to connect sensors and actuators.
The direct data transmission to a customer specific server via "NB-IoT" is no longer
available.
Note added indicating that the chargeable feature "Activation code BLE (300968)"
or the order option "Feature activationg BLE (300972)" is required to read out data
via a Bluetooth connection.
Explanation of the Data Descriptor adapted to the use in connection with the
rapidM2MStudio

Chapter "Determining the transmission paths"
Chapter removed

Rev. 03 325

Rev. Date Changes
02

(2/6)

14.04.2023

(2/6)

Chapter "Functionality of the internal data memory" on page 38
Specified system-related overheads per data record adjusted from 10bytes to
11bytes
Specifiedmax. size of a data record adjusted from 1024bytes to 1023bytes

Chapter "Procedure in case of connection aborts" on page 40
Explanation of the processwhen a connection is aborted during the device logic
download, revised

Chapter "Timeout monitoring in online mode" on page 41
Chapter added

Chapter "Registration memory blocks" on page 43
The Explanations of the "latestAppVersion", "installedAppVersion" and "appId"
registry entries which are connected to the application templates, have been
removed. The application templateswill no longer be developped but replaced by
the IoT apps. Explanations of the fields "pipAppId" and "pipAppVer" have been
adapted to the use in connection with IoT apps.

Chapter "File transfer" on page 44
The number of files that can be registered for the file transfer has been increased
from 20 to 60.

Chapter "Scope of supply" on page 49
Link andQR-Code referring to How-To-Video "Unpacking the
myDatalogEASY IoT " added.

Chapter "Assembling the myDatalogEASY IoT " on page 53
Links andQR-Codes referring to How-To-Videos added.

Chapter "Inserting/replacing the SIM card" on page 59
Link andQR-Code referring to How-To-Video "Inserting the SIM card" added.

Chapter "Sealing the pressure compensation" on page 61
Chapter added

Chapter "Technical details about the energy supply" on page 91
Figures and explanations changed to account for the fact that the reverse voltage
protection is part of the protective circuit in the power supply units
The block diagram of the PSU413D+ AP and the PSU413D AP now correspond to
hardware version 1.1 of the PSUs.
Protective circuit integrated in the PSU DC and PSU DC+ specified in more detail
Overvoltage protection integrated in the PSU413D AP and PSU413D+ AP
specified in more detail

Chapter "Site" on page 100
Explanation of the "Application version" field added. It specifies the version number
of the IoT application that is currently installed on the site.

Chapter "Basic settings" on page 103
Explanation of the parameter for selecting the report template used to display the
data has been revised (if no report template has been selected, the symbol to
display themeasurement data is not displayed in the list of sites/applications.)

Chapter "Measurement instrument" on page 104
Explanation of the "ModemVersion" and "OS Version" fields that are no longer
used removed

326 Rev. 03

Chapter 21 Document history

Rev. Date Changes
02

(3/6)

14.04.2023

(3/6)

Chapter "Functional principle" on page 108
Note added that the USB interface is a service interface.
Note added indicating that the chargeable feature "Activation code BLE (300968)"
or the order option "Feature activationg BLE (300972)" is required for wireless
communication.

Chapter "Connecting a Device via Bluetooth Low Energy" on page 115
Chapter added

Chapter ""GSM" tab" on page 116
Chapter added

Chapter ""Features" tab" on page 121
Chapter added

Chapter "Recommended procedure" on page 124
Chapter added

Chapter ""Customer" area" on page 136
Screenshots of the user interface of themyDatanet servers adapted to version
50v007

Chapter ""Sites / Applications" area at customer level" on page 138
Screenshots of the user interface of themyDatanet servers adapted to version
50v007

Chapter "Constants" on page 150
Returncode "ERROR_SENSOR_DISABLED" added

Chapter "Timer, date & time" on page 151
Explanation of the array with symbolic indices "TrM2M_DateTime" extended
Explanations of the "rM2M_TimerAdd()" and "rM2M_TimerAddExt()" functions
extended

Chapter "Uplink" on page 156
Explanation of the array with symbolic indices "TrM2M_GSMInfo" extended to
include the description of the "act", "lac" and "cid" elements
Explanation of the array with symbolic indices "TrM2M_TxItfStats" added
Explanation of the constants for themobile radio AcT (access technology) added
Explanation of the constants for the signal strengthmeasurement flags added
Explanation of the function, that must be provided by the device logic developer and
that is called up from the internal flashmemory after reading a data record,
extended to include the description of the parameter "timestamp256"
Explanation of the "rM2M_TxItfGetStats()" and "rM2M_SetTCPKeepAlive()"
functions added
Explanation of the "rM2M_GSMGetRSSI()" and "rM2M_GetRSSI()) functions
extended to include the description of the "flags" parameter
Explanation of the "rM2M_CfgRead()" function extended

Chapter "Encoding" on page 175
Explanation of the "rM2M_SetPacked()" function corrected, now indicating that in
connection with signed data types problems can arise and not in connection with
the formerly indicated unsigned data types.
Explanation of the function "rM2M_Pack()" extended

Rev. 03 327

Rev. Date Changes
02

(4/6)

14.04.2023

(4/6)

Chapter "RS232, RS485" on page 181
Description of the RS485_FLOW_NONE" and "RS485_FLOW_RTSCTS"
constants removed. There is no flow control on the RS485 interface.
Note added to the "RS232_Setbuf()" function, indicating that the buffers "rxbuf" and
"txbuf" have to be valid throughout the use by the firmware.
Note added to the "RS485_Setbuf()" function, indicating that the buffers "rxbuf" and
"txbuf" have to be valid throughout the use by the firmware.

Chapter "Bluetooth Low Energy" on page 189
Chapter added

Chapter "Registry" on page 203
Explanation of the constants for the "Indices of the registrationmemory blocks"
extended
Explanations of the "rM2M_RegGetString()", "rM2M_RegGetValue()", "rM2M_
RegSetString()", "rM2M_RegSetValue()" and "rM2M_RegOnChg()" functions
extended

Chapter "Char & String" on page 220
Explanations of the "sprintf()", "strcat()", "strcmp()", "strcspn()", "strpbrk()",
"strstr()", "strtol()" and "atof()" functions extended
Explanation of the "memcpy_native()", "memset_native()" and "memcomp_
native()" functions added

Chapter "CRC & hash" on page 228
Explanation of the "MD5()" function extended

Chapter "Various" on page 229
Explanation of the "getapilevel()", "exists()", "rtm_start()", "funcidx()", "numargs()"
and "getarg()" functions extended
Explanation of the "delay_us()" function added

Chapter "Console" on page 236
Explanation of the "printf()" function extended
Note added to the "setbuf()" function, indicating that the buffers "rxbuf" and "txbuf"
have to be valid throughout the use by the firmware.

Chapter "File transfer" on page 240
Explanation of the "FT_CMD_ENUM" and "FT_CMD_RETR" file transfer
commandos added
Explanation of the callback function, that must be provided by the script developer,
extended to include a description of how the file transfer commands "FT_CMD_
ENUM" and "FT_CMD_RETR" should be handled.
Explanation of the "FT_RegisterEnum()" function added

Chapter "Outputs" on page 251
Values of the constants "VSENS_15V" (from 0 to 15000) and "VSENS_24V" (from
1 to 24000) adapted for the "Vsens_On()" function

Chapter "Power management" on page 261
Explanation of the "PM_FLAG_AKKU_FAULT" flag added. It is used for signalling
the "Power management status".

328 Rev. 03

Chapter 21 Document history

Rev. Date Changes
02

(5/6)

14.04.2023

(5/6)

Chapter "Device Logic error codes" on page 264
Explanation of error code "SCRIPT_ERR, SCRIPT UPDATE ERROR" revised
Explanation of error codes "SCRIPT_ERR, SCRIPT SYSTEMSHUTDOWN",
"SCRIPT_ERR, SCRIPT DOWNLOAD ERROR" and "SCRIPT_ERR, SCRIPT
DELETED" added
Explanation of error code "LOG_NOSCRIPT_ERR, SCRIPT xxx" added

Chapter "Data Descriptor " on page 289
Specifiedmax. size of a data record adjusted from 1024bytes to 1023bytes

Chapter "Data structure" on page 289
Explanation of the attribute "editmask" revised

Chapter "rapidM2M Playground " on page 301
Screenshot and description of the rapidM2MPlayground updated (Button "system
console" has been removed, button for the global settings has been added)

Chapter "Replacing the power supply unit" on page 303
Links andQR-Codes referring to How-To-Videos added.
Note added indicating that, if the pressure compensation has been sealed, the silica
gel pouch also has to be replaced when replacing the PSU.

Chapter "Log entries and error codes" on page 313
Explanation of error code "MODEMNOT FOUND" added
Explanation of error codes "GSMNETWORK REGISTRATION", "GPRS
NETWORK REGISTRATION" ,"LTE NETWORK REGISTRATION", "SHT2X
SENSOR OK", "SHT2X RH ERROR", "SHT2X TEMP ERROR", "SHT2X
RH+TEMP ERROR", "SHT2X PLAUSIBILITY ERROR", "SHT2X COMERR",
"SHT2X COMERR1", "SHT2X COMERR2", "SHT2X TEMP RAW" and "SHT2X
RH RAW" added
Explanation of error code "ACCU 0E2PROMERROR" added

Chapter "Order options" on page 321
Accessories extended to include the "SDI-12 interface extension for
myDatalogEASY IoT " (301400), the "RS485 interface extension for
myDatalogEASY IoT " (301401), the "Electrical bonding and cable support for
myDatalogEASY IoT " (301403), the "Display 1,5'' full colour OLED for
myDatalogEASY IoT " (301405) and the "Contact junction for myDatalogEASY
IoT" (301402).

Chapter "Chargeable features" on page 321
The features "LPWAN" and "NB-IoT" for the direct data transmission to a customer
specific server are no longer available.
The feature "Cellular TCP IP" is no longer available as this function is now enabled
by default.

Chapter "Compatible IoT apps" on page 321
Chapter added

Chapter "Assembly sets" on page 322
Chapter added

Chapter "Antennas" on page 322
Accessories revised

Chapter "Solar panel" on page 322
Chapter added

Rev. 03 329

Rev. Date Changes
02

(6/6)

14.04.2023

(6/6)

Chapter "Charging devices and power supply units" on page 323
Note added indicating that the Top-hat rail DIN for myDatalogEASY IoT (301070)
is required for installing the Power supply 24V 0,63A for top-hat rail mounting in the
device.

Chapter "BLE sensors" on page 323
Chapter added

Chapter "BLE output modules" on page 323
Chapter added

Chapter "Other accessories" on page 323
Accessories extended to include the "Gas protection set for myDatalogEASY IoT
series " (301414)

Chapter "Glossary" on page 333
Explanation of the terms "App Center", "AppModel", "Device Logic", "Hardware ID
String", "IoT App", "Product revision", "rapidM2MStore" and "rapidM2M
Timestamp" added

03

(1/2)

23.06.2023

(1/2)

Chapter "Declaration of conformity" on page 15
Declaration of Conformity updated
Variant myDatalogEASY IoT 3GWorld removed
Variant myDatalogEASY IoT 2G/3G/4GWorld added

Chapter "Specifications" on page 19
Variant myDatalogEASY IoT 3GWorld removed
Variant myDatalogEASY IoT 2G/3G/4GWorld added

Chapter "Pipe mounting" on page 66
Chapter added

Chapter "Outdoor installation" on page 67
Chapter added

Chapter "Connection examples" on page 74
Connection example for an activemA-output added
Note added indicating that themyDatalogEASY IoT can not be added to existing 4-
20mA current loops.

Chapter "Mains operation (230VAC)" on page 75
Chapter added

Chapter "RS485 interface extension" on page 79
Chapter added

Chapter "SDI-12 interface extension" on page 80
Chapter added

Chapter "Earthing of sensor cables" on page 81
Chapter added

Chapter "Uplink" on page 156
Explanation of the return value of the "rM2M_CfgWrite()" function corrected

Chapter "RS232, RS485" on page 181
Explanation of the constant "RS232_RTS_RS485_DIR" added. It enables the
activation of the use of the RTS pin of the RS232 interface for the direction control
of the RS485 interface extension for myDatalogEASY IoT

330 Rev. 03

Chapter 21 Document history

Rev. Date Changes
03

(2/2)

23.06.2023

(2/2)

Chapter "Bluetooth Low Energy" on page 189
Explanation of the "BLE_Close()" function adapted to account for the fact that,
when it is called up, the connection to the currently connected sensors is also
automatically disconnected.
Explanation of the "BLE_SetScanResponseData()" function added

Chapter "Power management" on page 261
Explanation of the return value of the "PM_SetChargingMode()" function extended
Explanation of the return value of the "PM_BackupInit()" function corrected. The
function does not return "ERROR-1" in any case.

Chapter "Sensors"
Chapter removed

Rev. 03 331

Chapter 22Glossary

Chapter 22 Glossary
App centre

Area of themyDatanet server for the installation andmanagement of the IoT apps. The appmodels
that serve as a basis for the IoT apps are obtained via the rapidM2MStore . When installing an IoT app
on themyDatanet server the default settings defined when developing the appmodels are initially
applied. These default settings can then be adjusted. Any number of IoT apps can be created based on
a single appmodel by setting the appropriate default settings.

App model
An appmodel is developed in the rapidM2MStudio and forms the basis for creating IoT apps. It
essentially contains the executable program files (device logic, backend logic, portal view, etc.) from
which an IoT is created by adding the default settings. Distribution to the individual myDatanet servers
is carried out via the rapidM2MStore . The available appmodels are displayed in the app centre of the
respectivemyDatanet server.

Footprint
Themanufacturer's devices are equipped with subscriber identitymodules (SIM) ex-works for the
purpose of mobile data transmission. The footprint describes those countries and regionswhere a
mobile connection is available (see www.microtronics.com/footprint).

Device logic
The device logic is the intelligence installed on the device that determines the local functionality of the
device. The device logic is part of the appmodel and is created in a C-like scripting language built on
"PAWN".

Hardware ID string
Specifies the hardware platform installed in the device and its hardware version (e.g. rapidM2MM2
HW1.4). The part of the hardware ID string, that specifies the hardware version, is only increased if
changes relevant to the rapidM2M firmware have beenmade to the hardware platform.When
developing an appmodel, it can be specified on which hardware platform the appmodel can be
installed and which version of the hardware platform is required as aminimum. The hardware ID string
is displayed in the TESTbed of the rapidM2MStudio or in the "Identification" field of the input screen for
configuring the device.

IoT app
IoT apps form the basis for creating sites. They consist of an appmodel and corresponding default
settings that are applied as default values for the site when the site is created. The app centre can be
used to create any number of IoT apps based on a single appmodel by setting the appropriate default
settings. Thismakes sense if several use cases need to be covered by a single appmodel and they
each require a different default site configuration (e.g. if a data logger with different external sensors is
to be sold as a package).

NaN value
ThemyDatanet uses special encoding to display different error statuses in themeasurement values,
for example. By setting ameasurement value to "NaN", it is clearlymarked as invalid and is thus not
used for any further calculations. In the measurement value graphs, ameasurement value that has
been set to "NaN" is indicated by an interruption in the graph.When downloading the data, a
measurement value set to "NaN" is indicated by an empty data field.

Product revision
Specifies the revision of the product. The revision is increased every time the product ismodified (i.e.
electronic system, mechanics, etc.) and ismarked on the type plate of the product.

Rev. 03 333

rapidM2M Store
Is responsible for distributing the appmodels to the individual myDatanet servers. When installing and
updating IoT apps themyDatanet server access the appmodels provided in the rapidM2MStore . The
developer of the respective appmodel defineswhichmyDatanet servers are allowed to access an app
model via the rapidM2MStudio .

rapidM2M timestamp
Depending on the required accuracy, one of two special encodings can be used for the time stamp in
rapidM2M. If the accuracy requirements aremoderate, the "stamp32" data type (seconds since 1999-
12-31 00:00:00 UTC) can be used. If a higher accuracy is required, the "stamp40" data type (1/256
seconds since 1999-12-31 00:00:00 UTC) can be used. Converting the "stamp32" data type into the
UNIX timestamp (seconds since 1970-01-01 00:00:00 UTC) can be achieved by adding 946598400.

334 Rev. 03

Chapter 23 Contact information

Chapter 23 Contact information
Support & Service:
Microtronics Engineering GmbH
Hauptstrasse 7
3244 Ruprechtshofen
Austria, Europe
Tel. +43 (0)2756 7718023
support@microtronics.com
www.microtronics.com

Microtronics Engineering GmbH
(Headquarters)
Hauptstrasse 7
3244 Ruprechtshofen
Austria, Europe
Tel. +43 (0)2756 77180
Fax. +43 (0)2756 7718033
office@microtronics.com
www.microtronics.com

Rev. 03 335

Certified by TÜV AUSTRIA: EN ISO 9001:2015, EN ISO 14001:2015, ISO/IEC 27001:2013, EN ISO 50001:2011 for myDatanet | TÜV SÜD: ATEX Directive 2014/34/EU

© Microtronics Engineering GmbH. All rights reserved. Photos: Microtronics, shutterstock.com

301116 | Rev.03

Microtronics Engineering GmbH | www.microtronics.com
Hauptstrasse 7 | 3244 Ruprechtshofen | Austria | +43 2756 77180 | office@microtronics.com

	Chapter 1 Table of contents
	Chapter 2 Declaration of conformity
	2.1 myDatalogEASY IoT
 2G/4G EU
	2.2 myDatalogEASY IoT 2G/3G/4G World
	2.3 myDatalogEASY IoT
 2G/M1/NB1 World

	Chapter 3 Specifications
	Chapter 4 General specifications
	4.1 Translation
	4.2 Copyright
	4.3 General descriptive names
	4.4 Safety instructions
	4.4.1 Use of the hazard warnings
	4.4.2 General safety instructions
	4.4.3 Safety and preventative measures for handling GSM/GPRS modems
	4.4.3.1 Safety and precautionary measures for the GSM/GPRS modem installation
	4.4.3.2 Safety measures for installing the antenna

	4.5 Overview
	4.5.1 Block diagram

	4.6 Intended use
	4.7 General product information
	4.8 Device labelling
	4.9 Installation of spare and wear parts
	4.10 Storage of the product
	4.11 Warranty
	4.12 Disclaimer
	4.13 Obligation of the operator
	4.14 Personnel requirements

	Chapter 5 Functional principle
	5.1 Recommended procedure
	5.1.1 Development of M2M/IoT application

	5.2 Functionality of the internal data memory
	5.3 Memory organisation
	5.4 Procedure in case of connection aborts
	5.4.1 Connection abort in "online" mode
	5.4.2 Connection abort during a Device Logic download

	5.5 Timeout monitoring in online mode
	5.6 Automatic selection of the GSM network
	5.7 Determining the GSM/UMTS/LTE signal strength
	5.8 Determining the GSM position data
	5.9 Error handling
	5.10 Registration memory blocks
	5.10.1 REG_APP_OTP

	5.11 File transfer
	5.12 Meaning of the SIM state
	5.13 Using the external SIM slot

	Chapter 6 Storage, delivery and transport
	6.1 Inspection of incoming deliveries
	6.2 Scope of supply
	6.3 Storage
	6.4 Transport
	6.4.1 Transporting power supply units

	6.5 Return

	Chapter 7 Installation
	7.1 Dimensions
	7.2 Assembling the myDatalogEASY IoT
	7.3 Inserting/replacing the SIM card
	7.4 Sealing the pressure compensation
	7.5 Installing the myDatalogEASY IoT
	7.5.1 Wall mounting
	7.5.2 Pipe mounting
	7.5.3 Outdoor installation
	7.5.3.1 Attaching the housing for outdoor installation to a wall
	7.5.3.2 Attaching the housing for outdoor installation to a pipe

	7.6 Safety instructions for cabling
	7.6.1 Information on preventing electrostatic discharges (ESD)

	7.7 Electrical installation
	7.7.1 Connecting the sensors, actuators and power supply
	7.7.1.1 Connection examples
	7.7.1.2 Mains operation (230VAC)
	7.7.1.2.1 "Power supply 24V 0,63A for top-hat
 rail mounting " that can be integrated in the housing
	7.7.1.2.2 External power supply unit "Power supply housing
 "

	7.7.1.3 RS485 interface extension
	7.7.1.4 SDI-12 interface extension
	7.7.1.5 Earthing of sensor cables

	7.7.2 Connecting the mobile network antennas
	7.7.3 Technical details about the universal inputs
	7.7.3.1 0/4 to 20mA mode
	7.7.3.2 0 to 2V mode
	7.7.3.3 0 to 10V mode
	7.7.3.4 Standard digital modes (PWM, frequency, digital,
 counter)

	7.7.4 Technical details about the PT100/1000 interface
	7.7.5 Technical details about the RS485 interface
	7.7.6 Technical details about the RS232 interface
	7.7.7 Technical details about the USB interface
	7.7.8 Technical details about the Bluetooth Low Energy interface
	7.7.9 Technical details about the outputs
	7.7.9.1 Switchable sensor supply VOUT
	7.7.9.2 Switchable sensor supply VEXT
	7.7.9.3 Switchable sensor supply VEXTRS232
	7.7.9.4 Isolated switch contact (NO, CC)

	7.7.10 Technical details about energy management
	7.7.11 Technical details about the energy supply
	7.7.11.1 PSU413D+ AP (300524)
	7.7.11.2 PSU413D AP (300525)
	7.7.11.3 PSU713
 BP (300526)
	7.7.11.4 PSU DC (300529)
	7.7.11.5 PSU DC+ (300798)

	7.7.12 Technical details about the system time

	Chapter 8 Initial Start-Up
	8.1 User information
	8.2 Applicable documents
	8.3 General principles
	8.4 Commissioning the system
	8.5 Testing communication with the device

	Chapter 9 User interfaces
	9.1 User interface on the myDatalogEASY IoT
	9.1.1 Operating elements
	9.1.1.1 Solenoid switch
	9.1.1.2 Three-colour LED
	9.1.1.3 Lid reed contact

	9.2 User interface on the myDatanet server
	9.2.1 Site configuration
	9.2.1.1 Site
	9.2.1.2 Comments
	9.2.1.3 Control
	9.2.1.4 Configuration 0 - Configuration 9
	9.2.1.5 Alarm settings
	9.2.1.6 Basic settings
	9.2.1.7 FTP export settings

	9.2.2 Device configuration
	9.2.2.1 Comments
	9.2.2.2 Measurement instrument
	9.2.2.3 GPRS

	Chapter 10 DeviceConfig
	10.1 General
	10.2 Prerequisites
	10.3 Functional principle
	10.3.1 USB BLE-Adapter

	10.4 Installation
	10.4.1 Installing USB BLE-Adapter driver

	10.5 Menu of the DeviceConfig
	10.5.1 Settings
	10.5.1.1 Options

	10.6 Connecting a Device via USB
	10.7 Connecting a Device via Bluetooth Low Energy
	10.8 "GSM" tab
	10.9 "Log" tab
	10.10 "Firmware" tab
	10.11 "Features" tab
	10.12 "Sync" tab
	10.12.1 Existing connection to the myDatalogEASY IoT
	10.12.2 No connection to a device

	10.13 Recommended procedure
	10.13.1 Synchronisation with the myDatanet server
	10.13.1.1 Internet connection available when reading out the data
	10.13.1.2 No Internet connection when reading out the data

	Chapter 11 "tbd" smartphone app
	11.1 General

	Chapter 12 myDatanet server
	12.1 Overview
	12.1.1 Explanation of the symbols

	12.2 "Customer" area
	12.3 "Sites / Applications" area at customer level
	12.3.1 Reports
	12.3.2 Map view

	12.4 Recommended procedure
	12.4.1 Creating the site

	Chapter 13 rapidM2M Studio
	13.1 General
	13.2 Prerequisites
	13.3 Project dashboard
	13.4 CODEbed
	13.5 TESTbed

	Chapter 14 Device Logic
	14.1 General
	14.1.1 Direct entry of a device logic
	14.1.2 Uploading a binary file
	14.1.3 Using the CODEbed of the web-based development environment rapidM2M Studio

	14.2 Device API
	14.2.1 Constants
	14.2.2 Timer, date & time
	14.2.2.1 Arrays with symbolic indices
	14.2.2.2 Constants
	14.2.2.3 Functions

	14.2.3 Uplink
	14.2.3.1 Arrays with symbolic indices
	14.2.3.2 Constants
	14.2.3.3 Callback functions
	14.2.3.4 Functions

	14.2.4 System
	14.2.4.1 Arrays with symbolic indices
	14.2.4.2 Constants
	14.2.4.3 Functions

	14.2.5 Encoding
	14.2.5.1 Constants
	14.2.5.2 Functions

	14.2.6 RS232, RS485
	14.2.6.1 Constants
	14.2.6.2 Callback functions
	14.2.6.3 Functions

	14.2.7 Bluetooth Low Energy
	14.2.7.1 Arrays with symbolic indices
	14.2.7.2 Constants
	14.2.7.3 Callback functions
	14.2.7.4 Functions

	14.2.8 Registry
	14.2.8.1 Constants
	14.2.8.2 Callback functions
	14.2.8.3 Functions

	14.2.9 Position
	14.2.9.1 Arrays with symbolic indices
	14.2.9.2 Constants
	14.2.9.3 Functions

	14.2.10 Math
	14.2.11 Char & String
	14.2.12 CRC & hash
	14.2.12.1 Arrays with symbolic indices
	14.2.12.2 Functions

	14.2.13 Various
	14.2.13.1 Arrays with symbolic indices
	14.2.13.2 Constants
	14.2.13.3 Functions

	14.2.14 Console
	14.2.15 SMS
	14.2.15.1 Callback functions
	14.2.15.2 Functions

	14.2.16 External SIM
	14.2.16.1 Arrays with symbolic indices
	14.2.16.2 Functions

	14.2.17 File transfer
	14.2.17.1 Arrays with symbolic indices
	14.2.17.2 Constants
	14.2.17.3 Callback functions
	14.2.17.4 Functions

	14.2.18 Universal inputs
	14.2.18.1 Constants
	14.2.18.2 Functions

	14.2.19 Outputs
	14.2.19.1 Constants
	14.2.19.2 Functions

	14.2.20 LED
	14.2.20.1 Constants
	14.2.20.2 Functions

	14.2.21 Solenoid switch
	14.2.21.1 Constants
	14.2.21.2 Callback Funktionen
	14.2.21.3 Functions

	14.2.22 Power management
	14.2.22.1 Arrays with symbolic indices
	14.2.22.2 Constants
	14.2.22.3 Callback functions
	14.2.22.4 Functions

	14.3 Device Logic error codes
	14.4 Syntax
	14.4.1 General syntax
	14.4.1.1 Format
	14.4.1.2 Optional semicolons
	14.4.1.3 Comments
	14.4.1.4 Identifier
	14.4.1.5 Reserved keywords
	14.4.1.6 Numerical constants
	14.4.1.6.1 Numerical integer constants
	14.4.1.6.2 Numerical floating-point
 constants

	14.4.2 Variables
	14.4.2.1 Declaration
	14.4.2.2 Local declaration
	14.4.2.3 Global declaration
	14.4.2.4 Static local declaration
	14.4.2.5 Static global declaration
	14.4.2.6 Floating point values

	14.4.3 Constant variables
	14.4.4 Array variables
	14.4.4.1 One-dimensional arrays
	14.4.4.2 Initialisation
	14.4.4.3 Progressive initialisation for arrays
	14.4.4.4 Multi-dimensional arrays
	14.4.4.5 Arrays and the "sizeof" operator

	14.4.5 Operators and expressions
	14.4.5.1 Notational conventions
	14.4.5.2 Expressions
	14.4.5.3 Arithmetic
	14.4.5.4 Bit manipulation
	14.4.5.5 Assignment
	14.4.5.6 Comparative operators
	14.4.5.7 Boolean
	14.4.5.8 Other
	14.4.5.9 Priority of the operators

	14.4.6 Statements
	14.4.6.1 Statement label
	14.4.6.2 Composite statements
	14.4.6.3 Expression statement
	14.4.6.4 Empty statement
	14.4.6.5 Assert expression
	14.4.6.6 Break
	14.4.6.7 Continue
	14.4.6.8 Do statement while (expression)
	14.4.6.9 Exit expression
	14.4.6.10 For (expression 1; expression 2; expression 3) statement
	14.4.6.11 Goto label
	14.4.6.12 If (expression) statement 1 else statement 2
	14.4.6.13 Return expression
	14.4.6.14 switch (expression) {case list}
	14.4.6.15 While (expression) statement

	14.4.7 Functions
	14.4.7.1 Function arguments ("call-by-value" versus "call-by-reference")
	14.4.7.2 Named parameters versus fixed parameters
	14.4.7.3 Standard values of function
 arguments

	14.5 Differences to C

	Chapter 15 Data Descriptor
	15.1 Data structure
	15.1.1 Division of a structured measurement data channel into individual data fields
	15.1.2 Division of a configuration memory block into individual data fields
	15.1.3 Division of the aloha data into individual data fields
	15.1.4 Attributes of the field definition

	15.2 Example
	15.3 Special values of the data types

	Chapter 16 API
	16.1 Backend API
	16.2 rapidM2M Playground
	16.2.1 Overview

	Chapter 17 Maintenance
	17.1 General maintenance
	17.2 Replacing the power supply unit
	17.2.1 Charging the power supply unit

	17.3 Power supply units with integrated energy store

	Chapter 18 Removal/disposal
	Chapter 19 Troubleshooting and repair
	19.1 General problems
	19.2 Log entries and error codes
	19.2.1 Modem error

	19.3 Evaluating the device log
	19.3.1 Evaluating the device log on the myDatanet server
	19.3.2 Evaluating the device log using DeviceConfig

	Chapter 20 Spare parts and accessories
	20.1 Order options
	20.2 Chargeable features
	20.3 Compatible IoT apps
	20.4 Assembly sets
	20.5 Antennas
	20.6 Power supply units
	20.7 Solar panel
	20.8 Charging devices and power supply units
	20.9 BLE sensors
	20.10 BLE output modules
	20.11 Other accessories

	Chapter 21 Document history
	Chapter 22 Glossary
	Chapter 23 Contact information

