UDM201 BETRIEBSANLEITUNG

Version V-01.00 Datum 06-05-2022

HR PARTNER FUR MESSTECHN ISCHE SYSTEMLOS UNGEN

eom-solutions GmbH Energy Optimizing Monitoring

UDM201

Version V-01.00 Datum 06-05-2022

INHALTSVERZEICHNIS

1	ALLGEMEINER HINWEIS	7	
2	LIEFERUMFANG	9	
3	INSTALLATION DES UDM101	10 - 14	
	3.1 Montage und Befestigung	10	
	3.2 Stromversorgung	11	
	3.2.1 Spannungsversorgung	11	
	3.2.2 Sensoranschluss	11	
	3.3 Einschalten	12	
	3.4 Inbetriebnahme und Sart	12	
	3.5 Tastenfeld und Funktion	12	
	3.6 Bedienung und Anzeige	13	
	3.6.1 Auswahl des Anzeigefelds	13	
	3.6.2 Eingabe von Parametern	13	
	3.7 Einteilung und Beschreibung der Anzeigen am Gerät	14	
4	SHORTCUTS TASTENFELD / DUALFUNKTION	15	
5	AUSWAHL DER MESSSTELLE UND -POSITION	16	
6	SENSORINSTALLATION UND -MONTAGE	17 - 20	
	6.1 Installation der Sensoren	17	
	6.1.1 Abstand der Sensoren	17	
	6.1.2 Installation bzw. Montage der Sensoren	17	
	6.2 Kontrolle der Sensorinstallation	18	
	6.2.1 Signalstärke	18	
	6.2.2 Signalqualität (Q-Wert)	19	
	6.2.3 Laufzeit und Laufzeitdifferenz	19	
	6.2.4 Verhältnis der Ist/ Soll Laufzeit	19	
_	6.2.5 Allgemeine Installationshinweise	20	
7	BEDIENUNG	21 - 28	
	7.1 Normalzustand des Systems	21	
	7.2 Grenzwert für niedrigen Durchfluss	21	
	7.3 Nullkalibrierung	21	
	7.4 Skalaierungsfaktor	21	
	7.5 Systemsperre	22	

7	BEDIENUNG	21 - 28
	7.6 Frequenzausgang	22
	7.7 4-20 mA	22
	7.8 Totalisator-Impulsausgang	23
	7.9 Alarmprogrammierung	23
	7.10 Batch Controller	23
	7.11 4-20 mA Ausnalogausgangskalibrierung	24
	7.12 SD-Kartenbetrieb	24
	7.12.1 Leistungsbeschreibung	24
	7.12.2 Installieren oder entfernen der SD-Karte	25
	7.12.3 Auslesen der SD-Daten wenn diese Eingeschaltet ist	26 - 28
	7.12.4 Externes Lesen der SD-Daten	28
	7.12.5 ESN	28
8	BESCHREIBUNG DER ANZEIGEFENSTER	29 - 49
9	FEHLERDIAGNOSE	50
10	PRODUKTÜBERSICHT	51 - 53
	10.1 Besonderheiten	51
	10.2 Spezifikationen	51
	10.3 Funktionstheorie	52
	10.4 Anwendungen	53
11	ZUSATZ UND ANHANG	54 - 58
	11.1 Anlage 1 - W211 Einfügewandler	54
	11.1.1 Übersicht	54
	11.2 Auswahl des Messpunktes	55
	11.3 Bestimmung des Aufnehmerabstandes und der Wandlerinstallation	on 55 - 56
	11.4 Wandlermontagemethoden	57
	11.5 Die 9,5 – Z – Montagemethode	57
	11.6 Tastenkombinationen für die Eingabe von Rohrparametern	57 - 58

12 W110 EINFÜGEWANDLER	59 - 62
12.1 Überblick	59
12.2 Die Struktur des Q110-Wandleres	59
12.3 Auswahl der Messstelle	59
12.4 Bestimmung des Wandlerabstandes	60 - 61
12.5 Installationsmethode	61
12.6 Z-Montagemethode	61
12.7 V-Montagemethode	62
13 WH-EINFÜGEWANDLER	63 - 67
13.1 Überblick	63
13.2 Die Struktur des WH-Wandleres	63
13.3 Auswahl der Messstelle	63
13.4 Bestimmung des Wandlerabstandes	64
13.5 Eingabetasten für Einfügeaufnehmer vom Typ WH-Wandlerrohr	65
13.6 Eingabetasten für Einfügeaufnehmer vom Typ WH-Wandlerrohr	66
13.7 Installationsmethode	66
13.8 V-Montagemethode	67
14 NUTZUNG DER KOMMUNIKATIONSSERIELLE SCHNITTST.	67 - 68
14.1 Überblick	67
14.2 Serielle Port-Definition	68
15 Direkte Verbindung über RS232	68 - 79
15.1 Kommunikationsprotokoll und Verwendung	69
15.2 FUJI Protokoll	69 - 72
15.3 Funktionspräfix und Funktionszeichen	72
15.3.1 Präfix P	72
15.3.2 Präfix W	72 - 73
15.3.3 Funktionszeichen &	73
15.4 Schlüsselcode	73
15.5 MODBUS-Kommunikationsprotokoll	74
15.5.1 Code und Format der MODBUS-Protokollfunktion	74
15.5.2 MODBUS-Protokoll-Funktionscode 0x03 Verwendung	74 - 75
15.5.3 MODBUS-Protokoll-Funktionscode 0x06 Verwendung	76
15.5.4 Fehlerüberprüfung	76
15.5.5 MODBUS-Register Adressliste	77 - 79

16	RTD	Modul E- & PT1000-Verdrahtung (Modul optional)	79 - 81
	16.1	RTD-Energiezähler-Funktion	79
	16.2	Verdrahtung (PT1000)	79 - 80
	16.3	Energiemessverfahren	80
	16.4	Methoden der Temperaturkalibrierung	81
17	Ene	rgiezähler	82 - 83
	17.1	Energiemessverfahren	82
	17.2	Energiezählerfunktion	82
	17.3	Verdrahtung	82
	17.4	Energieberechnungsmethde	83
	17.5	Temperaturbereich einstellen	83
18	Flus	ss-Anwendungsdaten	84 - 86
	18.1	Schallgeschw. & Viskosität für häufig verwendete Flüssigkeiten	84
	18.2	Schallgeschw. für verschiedene häufig verwendete Materialien	85
	18.3	Schallgeschw. im Wasser (1 tm) bei unterschiedliche Temperaturen	86
19	Kon	takt	87

1 ALLGEMEINER HINWEIS

Diese Bedienungsanleitung gilt für das Ultraschalldurchflussmessgerät UDM 201 und enthält wichtige Informationen zu dem Gerät und für den Betrieb.

Bitte lesen Sie diese Bedienungsanleitung gewissenhaft durch bevor Sie das Gerät in Betrieb nehmen.

Dadurch können Schäden am Gerät sowie eine falsche Handhabung vermieden werden.

Des Weiteren enthalten sind:

- Eine für Schritt für Schritt Anleitung
- Eine Installationsanleitung
- Eine Anschlussanleitung
- Eine Komponentenübersicht
- Eine Menüübersicht
- Eine Schnellstartanleitung

WARNUNG

Kann zu Verletzungen führen.

ACHTUNG

Kann zu Schäden am Gerät führen.

Diese Bedienungsanleitung kann je nach Konfiguration des von Ihnen gekauften Gerätes abweichende bzw. nicht relevante Informationen enthalten.

2 LIEFERUMFANG

Vor der Installation des Ultraschalldurchflussmessgerätes kontrollieren Sie bitte, ob alle, in der Abbildung 2.1 ersichtlichen Produkte im Lieferumfang enthalten sind.

Vergewissern Sie sich, ob es zu keinen Schäden am Gerät gekommen ist. Sollten Schäden erk ennbar sein, wenden Sie sich bitte umgehend an die eom-solutions GmbH.

3 INSTALLATION DES UDM201

In diesem Kapitel ist die Installation des Ultraschalldurchflussmessgerätes UDM 201 beschrieben.

3.1 Montage und Befestigung

Im Lieferumfang des Gerätes ist eine Positionszeichnung (Bohrschablone) enthalten. Diese dient als Unterstützung bei der Montage des Gerätes. Bitte verwenden Sie diese und befolgen Sie die Schritte auf der Positionszeichnung (Bohrschablone). Die benötigten Bohrlochgrößen sowie Schrauben und Dübel sind auf der Positionszeichnung angeführt. Die Abbildung 3.1 zeigt die Positionszeichnung sowie das an der Wand montierte Ultraschalldurchflussmessgerät UDM 201.

Stellen Sie sicher, dass die Vorderseite (=Deckel) des Gerätes gesichert ist und sich nicht aus Versehen lockert oder hinunterklappt.

3.2 Stromversorgung

Kunden sollten besonders darauf achten, das gewünschte Netzteil anzugeben.

Um sicherzustellen, dass der Sender normal arbeiten kann, beachten Sie bitte bei der Verkabelung folgendes:

Stellen Sie sicher, dass die Stromanschlüsse in Übereinstimmung mit den auf dem Transmitter angegebenen Spezifikationen hergestellt werden.

3.2.1 Spannungsversorgung

Die für das Gerät notwendige Spannungsversorgung beträgt**90 ~ 245 VDC.** Der Anschluss der Spannungsversorgung ist in der Abbildung 3.2 ersichtlich.

3.2.2 Sensoranschluss

Sobald das Elektronikgehäuse installiert wurde, kann die Durchflussmesserverkabelung angeschlossen werden.

Wenn Sie das Gehäuse öffnen, können Sie die Etiketten der Senderschnittstellen von links nach rechts erkennen:

Abb. 3.3

3.3 Einschalten

Die standardmäßige Kabellänge der Sensoren beträgt 9 m. Die Sensorkabel können bis auf eine Länge von 300 m verlängert werden und können somit an die individuellen Bedürfnisse bzw. die Gegebenheiten vor Ort angepasst werden.

Spezifikationen der Verlängerungskabel Für die Verlängerung der Sensorkabel wird folgendes Kabel empfohlen:

— PVC-Steuerleitung geschirmt: YSLCY-0Z 2x0,75

3.4 Inbetriebnahme und Start

Nach dem erfolgreichen Anschluss des Ultraschalldurchflussmessgerätes an die Spannungsversorgung startet das Gerät automatisch und initialisiert eine Selbstdiagnose. Bei einem Fehler erscheint der zugehörige Fehlercode auf dem Display des Gerätes. Nach dem beenden der Selbstdiagnose wechselt das Gerät in den Normal-Betrieb mit den zuletzt eingestellten Parametern. Bei der erstmaligen Installation oder einer Neuinstallation des Gerätes müssen die Parameter der Messstelle eingegeben werden.

3.5 Tastenfeld und Funktionen

Das Tastenfeld des Ultraschalldurchflussmessgerätes in der Abbildung dargestellt.

Das Tastenfeld besitzt eine sogenannte Dualfunktion.

Dies bedeutet, dass die Tasten des Hauptbereiches eine sogenannte Shortcutfunktion besitzen. Somit lassen sich bestimmte Menüpunkte und Optionen schnell auswählen. Diese Shortcutfunktionen sind in Kapitel 4 beschrieben.

3.6 Bedienung und Anzeige

Auf der Anzeige des Ultraschalldurchflussmessgerätes können die Messwerte sowie die Einstellungen und Parameter auf über 100 unabhängigen Anzeigefenstern angezeigt werden. Durch Auswahl eines bestimmten Anzeigefensters ist es möglich, Parameter einzustellen, Einstellungen zu ändern oder sich Messwerte anzeigen zu lassen.

Jedes Anzeigefenster besitzt eine eigene Nummer (=Window ID), welche sich aus zwei Ziffern bzw. einem "+" oder "-" und einer Ziffer zusammensetzt.

Jede dieser Nummern hat eine eigene Bedeutung (siehe nachfolgende Zuordnung).

3.6.1 Auswahl des Anzeigefensters

Prinzipiell stehen zur Auswahl des Anzeigefensters zwei Methoden zur Verfügung:

METHODE 1

In der ersten Methode ist eine direkte Wahl des Anzeigefensters über eine Eingabe der Window ID möglich. Hierfür drücken Sie den Menü-Taste auf dem Gerät und geben dann die gewünschte zweistellige Nummer ein.

Das Gerät wechselt anschließend automatisch zur gewünschten Anzeige.

METHODE 2

Mit den Pfeiltasten Λ ν auf der Tatstatur können Sie durch das Menü navigieren, um zu dem gewünschten Fenster zu gelangen.

3.6.2 Eingabe von Parametern

Um Einstellungen vorzunehmen oder etwaige Parameter zu ändern drücken Sie die Enter-Taste und geben den gewünschten Wert über das Tastenfeld ein. Bei einigen Menüs ist keine Eingabe von eigenen Werten vorgesehen. Hier stehen bereits voreingestellte Werte in Form einer Auswahlliste zur Verfügung. Hier drücken Sie die Enter-Taste und wählen Sie mit den Pfeiltasten den gewünschten Wert bzw. Parameter aus.

ACHTUNG

Wenn Sie eine Änderung vornehmen möchten und dies trotz Drücken der Enter-Taste nicht möglich ist, bedeutet dies, dass das System gesperrt ist und ohne die Eingabe des Passwortes keine Änderungen möglich sind.

3.7 Einteilung und Beschreibung der Anzeigen am Gerät

In der folgenden Tabelle ist eine Übersicht über die Menükategorien verzeichnet.

- 00-09 Anzeigen für den Durchfluss und zugehörige Werte
- 10 29 Parametereinstellungen betreffend der Geräteinstallation
- 30 38 Einstellung des Maßsystems und der Einheiten
- 40 51 Setup-Einstellungen
- 52 89 Setup der Eingänge und Ausgänge sowie der Kommunikation
- 90 98 Diagnoseanzeigen
- +0 +2 Setup-Einstellungen

ACHTUNG

Die in der Tabelle nicht angeführten Nummern bzw. Menüpunkte sind für Einstellungen durch den Hersteller reserviert.

4 SHORTCUTS TASTENFELD / DUALFUNKTION

TASTE RATE	Zeigt die Durchflussrate an (M02).	Durchfluss 0,00°m³/h
TASTE VELOCITY	Zeigt die Anzeigegeschwindigkeit an (M01).	Durchfluss 0,00m/s
TASTE SIGANL	Zeigt die Signalstärke und die Signalqualität an (M90)	Stärke + Qualität UP:00,0 DN: 00,0 Q=00
TASTE TOTAL.	Zeigt den Netto-Totalisator an (M00).	Durchfluss 0,00m/s
TASTE TOM/TOS	Zeigt das Transitverhältnis an (M91).	TOMT TOS* 0,0000%
TASTE DIAG.	Zeigt den Systemfehlercode an (M08).	*R Normalzustand
TASTE 1	Geben Sie den Rohraußendurchmesser in Fenster M11 ein.	Rohrdurchmesser 50 mm
TASTE 2	Geben Sie die Rohrwandstärke in M12 ein.	Rohrwandstärke 4 mm
TASTE 3	Geben Sie das Rohrmaterial in Fenster M14 ein.	Rohrmaterial Edelstahl
TASTE 4	Geben Sie im Fenster M20 den Flüssigkeitstyp ein.	Flüssigkeitstyp Wasser
TASTE 5	Geben Sie die Transducer Mounting im Fenster M24 ein.	Transducer Mounting 0. V
TASTE 6	Geben Sie ein, um den manuellen Totalisator zu stoppen.	00 sec 00m/s
TASTE 7	Zeigen Sie nacheinander den Display / Hold- Totalisator an.	Durchfluss 0,00°m³/h POS 0,00°m³/s
TASTE 8	Zeigt abwechselnd dynamische/normale Durchflussrate und Geschwindigkeit an.	Durchfluss 0,00°m³/h Vel 0,00°m³/s
TASTE 9	Geben Sie die Flüssigkeitsschallgeschwindigkeit in Fenster M92 ein.	Schallgeschw. der Flüssigkeit m ³ /s
TASTE .	Datum und Uhrzeit im Fenster M60 anzeigen.	YY- MM- DD HH:MM:SS 03- 04- 04 10 :05 :04

TASTE 0, ENTER um den manuellen Summierer zu starten, ENTER um den manuellen Summierer zu beenden, ENTER, um den Standard-Summierer einzugeben und den endgültigen K-Faktor zu erhalten. Schließen Sie die Kalibrierung ab, indem Sie zum Speichern drücken. Drücken Sie die TASTE< Geben Sie Code 1234 ein, um Null einzustellen.

5 AUSWAHL DER MESSTELLE & POSITION

Die Auswahl der Messstelle (siehe Abbildung, (5.1)) ist neben der korrekten Installation des Ultraschalldurchflussmessgerätes und der Sensoren eines der wichtigsten Kriterien für eine genaue, valide und zuverlässige Durchflussmessung. Die Auswahl der Messstelle bzw. der Messposition sollte so getroffen werden, dass in dem betreffenden Abschnitt der Fluidstrom vollständig ausgebildet ist.

1. Wählen Sie einen Rohrabschnitt, der immer voller Flüssigkeit ist, z. B. ein vertikales Rohr mit einer Strömung in Aufwärtsrichtung oder ein volles horizontales Rohr.

2. Stellen Sie sicher, dass genügend gerade Rohrlängen mindestens der unten angegebenen Zahl für die Installation der vor- und nachgeschalteten Wandler entsprechen. Versuchen Sie zu vermeiden, dass eine ausreichende gerade Rohrlänge mindestens der unten angegebenen Zahl für die Installation der vor- und nachgeschalteten Wandler entspricht.

3. Auf dem horizontalen Rohr sollte der Wandler auf der 9 und 3 Uhr des Rohres montiert werden, wobei die Position von 6 und 12 zu vermeiden ist, im Falle der Signaldämpfung, die durch Rohr am unteren Sediment oder Blasenkavitation auf dem Rohr verursacht wird.

4. Stellen Sie sicher, dass die Temperatur der Messstelle unter den Temperaturgrenzen des Messumformers liegt.

5. Betrachten Sie den inneren Zustand des Rohres sorgfältig. Wenn möglich, wählen Sie einen Rohrabschnitt, bei dem das Innere frei von übermäßiger Korrosion oder Verzunderung ist.

6. Wählen Sie einen Abschnitt der schallleitenden Pfeife.

6.1 Installation der Sensoren

Bevor Sie die Sensoren an der betreffenden Leitung installieren, müssen Sie die Oberfläche der Leitung von Verschmutzungen befreien. Zu den zu entfernenden Verschmutzungen zählen zum Beispiel Rost, Farbe, Ablagerungen oder Ähnliches.

Tragen Sie anschließend eine ausreichende Menge an akustischer Koppelpaste auf die Sensoren auf bevor Sie diese an die Leitung endgültig montieren.

6.1.1 Abstand der Sensoren

Nach der Eingabe aller notwendigen Parameter wird der notwendige Abstand zwischen den Sensoren vom Ultraschalldurchflussmessgerät selbstständig berechnet. Der berechnete Abstand ist im Menü mit der Nummer 25 ersichtlich.

6.1.2 Installation bzw. Montage der Sensoren

Grundsätzlich sind die drei folgenden Installationsmethoden für die Sensoren möglich:

- V-Methode
- Z-Methode
- N-Methode

V-METHODE

Die V-Methode gilt als Standardmethode. Es gibt normalerweise eine genauere Ablesung und wird bei Rohren mit einem Durchmesser von 25mm bis 400mm (1"16") verwendet Es erfordert eine ordnungsgemäße Installaion auf beiden Seiten der Mittellinie. Des Weiteren ist sie es auch bequem zu bedienen, aber man muss auf eine korrekte Menge an akustischer Koppelpaste, richtiger Sensorabstand und korrekte Befestigung achten.

Abb. 6.1

Z-METHODE

Bei der Z-Methode (siehe folgende Abbildung) wird das Signal im Vergleich zur-Methode nicht von der Innenwand der Leitung reflektiert. Das Signal wird direkt von einem Sensor zum anderen Sensor durch das Fluid übertragen. Die Z-Methode wird bei Leitungen mit einem Durchmesser von 100 mm bis 800 mm verwendet. Empfohlen wird die Verwendung dieser Methode ab einem Durchmesser von 300 mm.

N-METHODE

Bei der N -Methode (siehe folgende Abbildung) wird das Signal drei Mal zwischen den Sensoren über das Fluid übertragen und wird zwei Mal von der Innenwand der Leitung reflektiert. Diese Methode wird für Leitungen mit kleinem Durchmesser verwendet. Die Genauigkeit der Messung kann durch Vergrößerung des Sensorabstandes verbessert werden.

6.2 Kontrolle der Sensorinstallation

Die Überprüfung der Sensoren hinsichtlich der Messgenauigkeit erfolgt über die Kontrolle der Signalstärke, Signalqualität sowie der Laufzeit und der Laufzeitdifferenz am Ultraschalldurchflussmessgerät. Neben der Überprüfung der oben genannten Parameter muss auch die Installation auf der Leitung kontrolliert werden.

Durch die Überprüfung wird sichergestellt, dass das Gerät genaue und valide Messergebnisse liefert.

6.2.1 Signalstärke

Die Signalstärke (Menü Nr.: 90) zeigt die gemessene Signalstärke der beiden Sensoren und wird in einem Bereich von 0,00 bis 99,90 angezeigt. Eine Signalstärke von 0,00 zeigt an, dass kein Signal vorhanden ist und eine Stärke von 99,90 zeigt an, dass die volle Signalstärke vorhanden ist.

Eine Hohe Signalstärke ist für eine genaue, valide und langzeitstabile Messung entscheidend.

Das Gerät bzw. das System befindet sich im Normalzustand wenn die Signalstärke über 60,00 liegt. Bei einer zu geringen Signalstärke muss die Sensorinstallation (Installationsmethode und Befestigung) bzw. die Position der Messung nochmals überprüft und gegebenenfalls geändert werden.

6.2.2 Signalqualität (Q - Wert)

Die Signalqualität bzw. der Q-Wert (Menü Nr.: 90) zeigt die gemessene Signalqualität an und wird in einem Bereich von 0,00 bis 99,00 angezeigt. Ein Wert von 0,00 bedeutet, dass kein Signal erkannt wurde und somit keine Qualität gemessen werden konnte. Ein Wert von 99,0 bedeutet, dass die maximal mögliche Qualität vorhanden ist.

Überprüfen Sie regelmäßig die Sensorinstallation (Installationsmethode und Befestigung) sowie die Schicht der akustischen Koppelpaste, um eine möglichst genaue und valide Messung über eine lange Zeit zu gewährleisten.

6.2.3 Laufzeit und Laufzeitdifferenz

Die Laufzeit und die Laufzeitdifferenz (Menü Nr.: 93) beschreibt den Zustand der Messung bzw. der installierten Sensoren.

Die Berechnungen der Durchflussmenge in der Leitung beruhen auf diesen Parametern. Stark schwankende Werte der Laufzeit und der Laufzeitdifferenz wirken sich direkt auf die gemessene Geschwindigkeit bzw. den Durchfluss aus.

Eine schlechte Laufzeit und Laufzeitdifferenz können von folgenden Faktoren abhängen:

- Schlechter Rohrzustand
- Inkorrekte Sensorinstallation
- Inkorrekte Eingabe von Parametern

Generell sollte die Laufzeitdifferenz eine Schwankung von ± 20 % nicht überschreiten. Eine größere Schwankung kann jedoch bei kleinen Leitungen und einer sehr geringen Geschwindigkeit auftreten.

6.2.4 Verhältnis der Ist/Soll Laufzeit

Das Verhältnis der Ist/Soll Laufzeit (Menü Nr.: 91) gibt an, ob der Sensorabstand korrekt ist. Das Verhältnis der Ist/Soll Laufzeit sollte in einem Bereich von 100 ±3 bei einer korrekten Installation nicht überschreiten.

ACHTUNG

Wenn das Verhältnis von Ist/Soll Laufzeit außerhalb des Bereiches von 100 ±3 liegt ist folgendes zu überprüfen:

- Korrekte Eingabe der Parameter
- Korrekter Sensorabstand
- Montageart der Sensoren entsprechen den zuvor angeführten Methoden und unter Berücksichtigung der angegebenen Richtwerte.

6.2.5 Allgemeine Installationshinweise

Folgende Hinweise bzw. Punkte müssen bei der Installation berücksichtigt werden:

- Ohne die korrekte Eingabe der Parameter ist keine korrekte Messung sowie kein korrekter Betrieb möglich.
- Während der Installation der Sensoren sollte auf die ausreichende Menge an akustischer Koppelpaste geachtet werden. Des Weiteren sind die Sensoren so zu positionieren, dass am Gerät die maximale Signalstärke und Signalqualität (Q-Wert) angezeigt wird.
- Der Sensorabstand, welcher im Menu Nr.: 25 ersichtlich ist sollte korrekt eingestellt sein und es ist darauf zu achten, dass die Sensoren auf der Leitung in einer Linie und auf einem Abschnitt mit gleichem Durchmesser installiert sind.
- Besonders zu beachten sind Rohre bzw. Leitungen mit Schweißnähten. Hier treten häufig Fehler auf.

Bei einer Signalstärke von 0,00 is folgendes zu überprüfen:

- Eingegebene Parameter
- Sensorabstand und Installationsmethode
- Die Dicke der Auskleidung
- Abstand zu eigebauten Armaturen, Ventilen, Bögen und T-Stücken
- Anteil der Luft im Fluid
- Wird nach Kontrolle und etwaiger Änderung keine Signalstärke erzielt, so muss die Position der Messung geändert werden.
- Stellen Sie sicher, dass eine optimale Stärke und Qualität des Signals vorliegt um eine genaue, valide und langzeitstabile Messung zu erhalten
- Bei störenden Einflüssen durch ein elektromagnetisches Feld ist keine genaue und valide Messung möglich
- Überprüfen Sie die Messwerte nach der Beendigung der Installation

7 BEDIENUNG

7.1 Normalzustand des Systems

Durch Eingabe von [Menü+0+8] kommt man zur Anzeige des Systemzustandes.

—*R

Erscheint auf dem Display des Gerätes die Anzeige "*R", so bedeutet dies, dass sich das System im Normalzustand befindet.

—*G

Erscheint auf dem Display des Gerätes die Anzeige "*G", so bedeutet dies, dass das Gerät selbstständig die Signalverstärkung einstellt. Dies bedeutet auch, dass sich das System im Normalzustand befindet. Dauert die Einstellung jedoch zu lange, so wechselt das Gerät nicht in den Normalzustand.

-*I

Erscheint auf dem Display des Gerätes die Anzeige "*I", so bedeutet dies, dass kein Signal von den Sensoren erkannt wurde. Kontrollieren Sie den Anschluss der Sensoren sowie die Installation.

7.2 Grenzwert für niedrigen Durchfluss

Wenn die Durchflussrate unter den niedrigen Durchflussgrenzwert fällt, wird die Durchflussanzeige auf Null gedrückt. Diese Funktion kann das Herunterfahren verhindern, aber es gibt immer noch eine flüssige Bewegnung im Rohr, was zu einem kumulativen Fehler führt. Es wird empfohlen, 0,01 m / s als Grenzwert für niedrigen Durchfluss einzugeben. Dieser hat keinen Bezug zu den Messergebnissen.

7.3 Nullkalibrierung

Stimmt der tatsächliche Nullpunkt nicht mit dem gemessenen Nullpunkt überein so kommt es zu einer Messdifferenz. Je größer diese Differenz ist umso ungenauer wird die Messung. Ziel ist es daher, dass diese Differenz so klein wie möglich bzw. Null ist. Besonders bei einem geringen Durchfluss ist eine Differenz zum tatsächlichen Nulldurchfluss ausschlaggebend. Aufgrund des hohen Einflusses einer solchen Differenz ist es notwendig eine Nullkalibrierung durchzuführen und die Messgenauigkeit so zu erhöhen.

Drücken Sie [Menü+4+2] für die Nullkalibrierung und bestätigen Sie diese mit der Enter-Taste- Warten Sie anschließend, bis die Nullkalibrierung beendet ist. Im Menü mit der Nummer 43 kann die Nullkalibrierung zurückgesetzt werden.

7.4 Skalierungsfaktor

Unter dem Skalierungsfaktor versteht man das Verhältnis zwischen dem tatsächlichen Wert und dem gemessenen Wert.

Die Veränderung des Skalierungsfaktors kann bei Verwendung des Gerätes mit unterschiedlichen Rohrmaterialien notwendig sein. Zur Veränderung des Skalierungsfaktors drücken Sie [Menü+4+5] und geben Sie den gewünschten Wert ein.

Systemsperre 7.5

Bei einer aktivierten Systemsperre ist es möglich, sich die Messwerte und eingegebenen Parameter am Display des Gerätes anzeigen zu lassen. Die Veränderung der eingegebenen Parameter ist nicht möglich.

Die Systemsperre dient also zum Schutz vor Manipulationen oder Fehleingaben durch unqualifiziertes Personal.

Sperren

Drücken Sie [Menü+4+7] um zur Systemsperre zu gelangen. Mit der Enter-Taste können Sie ein neues Passwort eingeben. Dieses Passwort muss aus 6 Ziffern bestehen. Durch erneutes Drücken der Enter-Taste bestätigen Sie das Passwort. Anschließend sollte aus dem Display die Anzeige "System gesperrt" erscheinen.

Entsperren

Um das System zu entsperren drücken Sie erneut auf die Enter Taste und geben das sechsstellige Passwort ein und bestätigen Sie dieses mit der Enter-Taste. Anschließend sollte aus dem Display die Anzeige "System entsperrt" erscheinen.

7.6 Frequenzausgang

Das Ultraschalldurchflussmessgerät verfügt über einen Freguenzausgang. Der hohe Wert zeigt den hohen Durchfluss und der niedrige Wert den niedrigen Durchfluss an. Der Frequenzausgang kann frei konfiguriert bzw. auf die gegebenen Messbedingungen angepasst werden. Das Anschlussbild ist in der folgenden Abbildung dargestellt.

7.7 4-20 mA

Mit einem Stromkreisausgang, der eine Genauigkeit von 0,1% überschreitet, ist der Durchflussmesser programmierbar und konfigurierbar mit Ausgängen wie 4 ~ 20mA oder 0 ~ 20mA, die in Menü 55 ausgewählt sind. Weitere Informationen finden Sie im Menü 55 in "Erläuterung der Fensteranzeige"

Geben Sie in Fenster M56 einen Flusswert von 4 mA ein. Geben Sie in Fenster M57 den Durchflusswert von 20 mA ein. Wenn der Durchflussbereich in einem bestimmten Rohr beispielsweise 0 ~ 1000 m3/h beträgt, geben Sie 0 in Fenster M56 und 1000 in Fenster M57 ein. Wenn der Durchfluss von -1000 ~ 0 ~ 2000m3 / h reicht, konfigurieren Sie den 20 ~ 4 ~ 20mA Ausgang, indem Sie in Fenster M55 auswählen, wenn die Flussrichtung kein Problem darstellt. Geben Sie 1000 in Fenster M56 und 2000 in Fenster M57 ein. Wenn die Strömungsrichtung ein Problem darstellt, ist Modul 0 ~ 4 ~ 20mA verfügbar. Wenn die Strömungsrichtung als negativ angezeigt wird, befindet sich der Stromausgang im Bereich von 0 ~ 4mA, während die 4 ~ 20mA für die positive Richtung ist. Die Optionen des Ausgabemoduls werden in WindowM55 angezeigt. Geben Sie "-1000" in Fenster M56 und 2000 in Fenster M57 ein. Drücken Sie [MENÜ+5+8+ENTER], $[\downarrow]$ oder $[\uparrow]$, um die Messwerte "OmA", "4mA", "8mA", "16mA", "20mA" anzuzeigen, schließen Sie ein Amperemeter an, um den aktuellen Schleifenausgang zu testen und die Differenz zu berechnen. Kalibrieren Sie es, wenn die Differenz nicht innerhalb der Toleranz liegt. Überprüfen Sie den aktuellen Schleifenausgang in Fenster M59, wenn er sich zusammen mit der Änderung des Flusses ändert.

7.8 Totalisator-Impusausgang

Jedes Mal, wenn der Durchflussmesser einen Einheitsdurchfluss erreicht, kann er einen Totalisator-Impulsausgang an einen entfernten Zähler erzeugen. Daher ist es notwendig, OCT und das Relay entsprechend zu konfigurieren. (Siehe Fenster M78 und M79). Wenn es beispielsweise notwendig ist, den positiven Totalisatorimpuls durch ein Relais zu übertragen, und jeder Impuls einen Fluss von 0,1 m darstellt, ist die Konfiguration nötig wie folgt:.

Wählen Sie in Fenster M32 die Durchflusseinheit des Totalisators aus "Kubikmeter (m3)";

Wählen Sie in Fenster M33 den "Skalierungsfaktor "x0.1;

Wählen Sie in Fenster M79 "9. Positiver Totalisator-Impulsausgang";

ACHTUNG

Stellen Sie sicher, dass Sie einen geeigneten Totalisatorimpuls auswählen. Wenn der Totalisatorimpuls zu groß ist, wird die Ausgabe des Zyklus zu lang; Wenn der Totalisatorimpuls zu klein ist, arbeitet das Relais zu schnell. Der Totalisator wird empfohlen, um im Bereich von 1 ~ 60 Puls pro Sekunde zu senden.

7.9 Alarmprogrammierung

Der Ein-Aus-Ausgangsalarm wird durch OCT oder Übertragung an einen externen Stromkreis, durch Öffnen oder Schließen eines Relais erzeugt. Das Ein-/Aus-Ausgangssignal wird unter folgenden Bedingungen aktiviert:

(1) Signal nicht erkannt; (2) Schlechtes Signal erkannt; (3) Der Durchflussmesser ist nicht bereit für die normale Messung; (4) Der Durchfluss erfolgt in umgekehrter Richtung (Rückfluss). (5) Die analogen Ausgänge überschreiten die Spanne um 120 %; (6) Der Frequenzausgang überschreitet die Spanne um 120%.; (7) Der Durchfluss überschreitet die konfigurierten Bereiche (Konfigurieren Sie die Durchflussbereiche mit dem Software-Alarmsystem. Es gibt zwei Software-Alarme: Alarm # 1 und Alarm # 2. Der untere Grenzwert für Alarm#1 wird in Fenster M73 konfiguriert, und der obere Grenzwert wird in Fenster M74 konfiguriert. Wie bei Alarm #2 ist der untere Grenzwert in M75 und der obere in Fenster M76)

7.10 Batch Controller

Der Batch-Controller ist in der Lage, eine Durchflussmengensteuerung durchzuführen. Die interne Chargensteuerung im Durchflussmesser kann über die Tastatur gesteuert werden. Der Ausgang kann über OCT oder ein Relais übertragen werden. Geben Sie den Stapelwert in Fenster M81 ein. Starten Sie danach den Batch-Controller.

7.11 4-20 mA Analogausgangskalibrierung

Jedes Ultraschalldurchflussmessgerät wird direkt vor Auslieferung kalibriert und überprüft. Diese Kalibrierung ist nur notwendig, wenn der eingestellte Wert (Menü 58) und der gemessene Wert nicht übereinstimmen.

Um den Analogausgang zu kalibrieren, drücken Sie [Menü+v+0+Enter] und geben als Passwort 115800 ein und drücken erneut Enter. Wenn das Gerät ausgeschaltet wird, schließt sich dieses Fenster automatisch.

Drücken Sie **[v]** um den 4 mA Ausgang zu kalibrieren. Messen Sie mit einem Amperemeter den ausgegebenen Wert. Mit den Pfeiltasten können Sie nun den Wert am Gerät verändern, bis dieser mit dem gemessenen Wert übereinstimmt. Wenn die Werte übereinstimmen, ist die Kalibrierung abgeschlossen.

Drücken Sie die Enter-Taste, um den 20 mA Ausgang zu kalibrieren Die Vorgehensweise ist ident mit der Kalibrierung des 4 mA Ausgangs.

Die Kalibrierung wird automatisch gespeichert und muss bei einem Neustart des Gerätes nicht erneut durchgeführt werden.

7.12 SD-Kartenbetrieb

7.12.1 Leistungsbeschreibung

Datenerfassungsintervall: beliebige Intervalleinstellungen von 1 bis 3600 Sekunden sind je nach Anforderung in Ordnung. Dateninhalt: Datum und Uhrzeit, Durchflussrate, Durchflussgeschwindigkeit, Gesamtfluss, positiver oder negativer Totalisator.

```
Datenspeicherformat:
1=07-04-10,14:16:33
2=+3.845778E+01m
3=+1.451074E+00m/s
4=-0000010E+0m3
5=+0000002E+0m3
6=-0000012E+0m3
7=+7.1429E-01KJ/s
8=+3.9721E+03KJ
9=+4.573242E+01
10=+4.338866E+01
```

Format des Dateisystems: FAT16. Dateityp: Nur-Text-Datei (. TXT). Dateinummer: maximal 512pcs Dateiname Format: jj-mm-dd (jj - Jahr, mm- Monat, dd - Datum).

Es kann jedes Mal 120 Bytes an Daten speichern.

Wenn es so eingestellt ist, dass es einmal pro 5 Sekunden gespeichert wird, ist die Kapazität zum Speichern der Datei in 24 Stunden ist 120 * 3600 / 5 * 24 = 2073600Byte≈2.1Mbyte, daher kann 1Gbyte SD-Karte für Tage speichern:

1024/2.1 =487.6≈487 Tage. Wenn die Kapazität der SD-Karte voll ist, überschreiben die neuen Daten die frühesten Dateien automatisch.

7.12.2 Installieren oder entfernen der SD Karte

Wenn der Bediener die SD-Karte beim Einschalten einsetzen oder entfernen möchte, ist der folgende Vorgang auszuführen:

Wie im Bild oberhalb beschrieben, müssen Sie den Schalter zur "OFF"-Position bewegen. Dieser Schalter aktiviert NUR die Speicherprotokollierung;

ES SICHERT NICHT DIE STROMVERSORGUNG DES DURCHFLUSSMESSERS.

Es ist dann sicher, die SD-Karte zu entfernen oder zu installieren.

Verschieben Sie den Schalter nach der Neuinstallation zur Position "EIN", damit die SD-Karte weiterhin Daten protokollieren kann.

ACHTUNG

Entfernen Sie die SD-Karte nicht aus dem Lesegerät, während Sie aktiv mit Daten arbeiten. Die Daten sollten an einem separaten Speicherort auf dem PC gespeichert und dann aus dieser Datei verarbeitet werden.

Die Verarbeitung der Daten direkt vom Speicherort der SD-Kartendatei auf dem PC kann zu Verlust oder Zerstörung von Daten führen, wenn Sie die SD-Karte während der Verarbeitung entfernen.

7.12.3 Auslesen der SD-Daten wenn diese Eingeschaltet ist

Öffnen Sie die Abdeckung des Zählers; Schließen Sie den Durchflussmesser über RS232 an einen PC an.

Der Bediener kann die Daten auf der SD-Karte mit der Durchflussmesser gelieferten CONVERTER-Software lesen und bearbeiten. Siehe unten:

1. An den Durchflussmesser anschließen

	Connecting	with the Flowmeter	
ADD. 7.3	Plesse wait while communications	e establishing with the Flowmeter	Comm Setup
			Offline
	Converter (Version 1.2)	Copyright (C), All right reserved by Gentos Industrial Automation Ltd.	Exit

Klicken Sie auf "Comm Setup", richten Sie den Kommunikationsport (Allgemein COM1) und die Baudrate (19200bps) ein, schalten Sie den Durchflussmesser ein:

Com Port	COM1 -
Baudrate	19200
	Check Status

2. Wie auf dem Bild unten zu sehen ist, wurde eine Verbindung zum Durchflussmesser hergestellt. Wenn es nicht an den Durchflussmesser angeschlossen ist, können Sie auf die Offline-Schaltflächenschnittstelle zur Dokumentkonvertierung klicken):

	📰 Converter	🔲 🗖 🔜
	File Configuration About	
Abb. 7.5	SD Card Converter	
	File List	
	Test SD Card	
	Read List	
	Read File	
	DeleteFile	
	Exit	

a) Wählen Sie "SD-Karte testen", wenn die LED leuchtet und die Meldung "Die SD-Karte ist in Ordnung" angezeigt wird, funktioniert die SD-Karte.

b) Klicken Sie auf "Liste lesen", um zum SD-Kartenkatalog aller Dokumente zurückzukehren.

c) Verwenden Sie die linke Maustaste, um eine Datei im zurückgegebenen Verzeichnis auszuwählen, klicken Sie dann auf "Datei lesen", es wird ein Lesen des Fortschritts des Dokuments angezeigt.

Abb. 7.6

File List	
Test SD Card 080523 TXT 080527 TXT 080528 TXT	
ReadList	
Read File	
DeleteFile	

Nach dem Lesen zeigt ein Popup-Display "Die Datei wurde gelesen", und im Converter.exe im Stammverzeichnis gespeichert. Überprüfen Sie, ob das Format des Dateiinhalts normal ist oder nicht.

d) Verwenden Sie die linke Maustaste, um eine Datei auszuwählen, die erfolgreich gelöscht wurde, ein Popup-Display zeigt "Die Datei wurde gelöscht". Wenn es sich bei der ausgewählten Datei um eine aktuelle Datei handelt, wird NO DELETION angezeigt.

3. Klicken Sie auf das Dropdown-Menü "Konfiguration", wählen Sie "Dateityp", wie das folgende Bild zeigt:

Abb. 7.7

Fi	le Type Configuratio	Dn	
TestS	File Save Type		
Read	@ *.TXT	C *XLS	
Read	File Save Path		
10.00	VEX	>>	
Delet			
	OK	Cancel	
Exit			

Sie können das Format und den Pfad des Ausgabeverzeichnisses auswählen.

4. Dateikonverter-Tool

(Wenn es nicht an den Durchflussmesser angeschlossen ist, können Sie auf die Schnittstelle der Schaltfläche "Offline"das Dokument konvertieren).

Drücken Sie die Taste "Konverter" und konvertieren Sie dann das Datenformat der SD-Karte von ". TXT "zu ". XLS", wie folgt:

	🖽 Converter 📃 🗖 🔀
Abb. 7.6	File Configuration About
	SD Card Converter
	Source File (*.txt)
	Destination File (*.sls)
	✓ Extended Format Convert Exit

Wählen Sie die zu konvertierende Datei in "Quelldatei" (*.txt) aus, geben Sie den Verzeichnispfad und den Dateinamen als "Zieldatei (*.xls)"an, dann drücken Sie "Konvertieren". Wenn "OK!" angezeigt wird, ist die Konvertierung abgeschlossen.

7.12.4 Externes Lesen der SD-Daten

Entfernen Sie die SD-Karte aus dem Durchflussmesser. Der Bediener kann dann einen PC-Kartenleser verwenden, um die Daten auf der Karte zu lesen. Verwenden Sie die Software "Converter.exe", um das Format zu konvertieren, wenn benötigt.

ACHTUNG

In Bezug auf die Speicherkarte ist die Kapazität des Durchflussmessers zu gering wenn einige Befehle relativ langsam und eingeschränkt ausgeführt werden. Das externe Lesen der SD-Daten wird empfohlen.

7.12.5 ESN

Wir stellen dem Durchflussmesser eine eindeutige elektronische Seriennummer zur Verfügung, um jeden Durchflussmesser für die Bequemlichkeit zu identifizieren. Das ESN, die Gerätetypen und -Versionen kann in Windows M61 angezeigt werden.

8 BESCHREIBUNG DER ANZEIGEFENSTER

In der Tabelle 8.1 sind alle Displaycodes des Gerätes mit Nummer und Beschreibung verzeichnet.

ND	DETEICUNIUNIC
אמ.	DEZEICHINUNU

DURCHFLUSSMESSUNG

00	Durchfluss und Nettosumme
01	Durchfluss und Geschwindigkeit
02	Durchfluss und Positive Summe
03	Durchfluss und Negative Summe
04	Datum / Uhrzeit und Durchfluss
08	Systemstatus
09	Positive Tagessumme

PARAMETEREINGABE

10	Rohr Außenumfang
11	Rohraußendurchmesser
12	Rohrwandstärke
13	Rohrinnendurchmesser
14	Rohrmaterial
15	Rohrschallgeschwindigkeit
16	Liner-Material
17	Liner Sound Geschwindigkeit
18	Liner-Dicke
20	Flüssigkeitstyp
21	Flüssig Schallgeschwindigkeit
22	Viskosität der Flüssigkeit
23	Wandlertyp
24	Wandlermont. Methode
25	Wandlermont. Abstand
26	Parameter Setup
27	Querschnittsfläche
28	Holding mit schlechtem Sig
29	Einrichtung leerer Rohre

OPTIONEN FÜR DUCHFLUSSEINHEITEN

30	Metrisches System Einheiten
31	Optionen für Durchflussrateneinheiten
32	Totalisator-Durchflusseinheiten
33	Totalisator-Multiplikator
34	NET Totalisator EIN/AUS
35	POS-Totalisator EIN/AUS
36	NEG Totalisator EIN/AUS
37	Zurücksetzen des Totalisators
38	Manueller Totalisator

SETUP-OPTIONEN

40	Dämpfung					
41	Grenzwert für niedrigen Durchfluss					
42	Statische Null setzen					
43	Null zurücksetzen					
44	Manueller Nullpunkt					
45	Einteilungsfaktor					
46	Netzwerk-Identifizierung Adressschlüssel					
47	Systemsperre					
48	Schnittkorrektur					
49	Segmentierte Korrektur					
50	Datenerfassung SD-Karten, Zeitintervall, Einst.					
51	Energieaufzeichnung EIN/AUS					
EIN- U	IND AUSGANGSEINRICHTUNG					
52	Analogeingang A 1					
53	Analogeingang A 2					
54	Analogeingang A 3					
55	CL-Ausgabemodus Option					
56	CL 4mA Ausgangswert					
57	CL 20mA Ausgangswert					
58	CL-Check-Verifizierung					
59	CL-Stromausgang					
60	Datum und Uhrzeit Einstellungen					
61	ESN					
62	Parameter für die Schnittstelle					
63	Al1 Wertebereich					
64	Al2 Wertebereich					
65	A 3 Wertebereich					
67	FO-Frequenzbereich					
68	Niedriger LWL-Durchfluss					
69	Hoher LWL-Durchfluss					
70	Optionen für LCD-Hintergrundbeleuchtung					
72	A 1 Wertebereich					
73	Alarm #1 Niedriger Wert					
74	Alarm # Hoher Wert					
75	Alarm # Niedriger Wert					
76	Alarm #2 Hoher Wert					
77	Piepser-Setup					

DURCHFLUSSMESSUNG

78	OCT-Ausgabe einrichten		
79	Aufbau des Relaisausgangs		
80	Durchfluss Batch STRG		
81	Durchfluss-Batch-Controller		
82	Datum Totalisator		
83	Automatische Strömungskorrektur		

ENERGIEBERECHNUNGSMETHODEN

84	Optionen für Energieeinheiten
85	Spezifische Wärmeauswahl
86	Delta-Temperatur Empfindlichkeitseinst.
87	Energie-Totalisator EIN/AUS
88	Energie-Totalisator-Multiplikator
89	Energie-Totalisator zurücksetzen

DIAGNOSE

	· · ·
99	Optionen für Temperatureinheiten
98	Wandlermontage Positionsoptionen
97	Wandlerabstand Automat. Korrektur Opt.
94	Reynolds-Zahl und Faktor
93	Gesamtzeit und Deltazeit
92	Fluide Schallgeschwindigkeit
91	TOM / TOS*100
90	Signalstärke und Qualität

ABKÜRZUNG DER TASTEN

Rate	Menü 02
Geschwindigkeit	Menü 01
Signal	Menü 90
Totalisator	Menü 00
TOM/TOS	Menü 91
Diag.	Menü 08

ANHANG

+0	Last Power Off Time und Durchfluss				
+1	Gesamtarbeitszeit				
+2	Letzte Ausschaltzeit				
+3	Letzter Durchfluss				
+4	Insgesamt EIN/AUS				
+6	Flüssiger Klang Reichweite ändern Geschw.				
-0	Hardwareanpassungseintrag				
-1	Temperatur Kalibrierung				
-2	Kl-Kalibrierung				

HINWEIS: Die anderen Menüfunktionen werden vom Hersteller beibehalten.

ANZEIGEÜBERSICHT

[Menü+0+0]	Zeigt den aktuellen Durchfluss und die Nettosumme an.	FLOW 0,00 m³/h *R NET 0x1 m³		
[Menü+0+1]	Zeigt den aktuellen Durchfluss und die Fließgeschwindigkeit an.	FLOW 0,00 m³/h *R GESW 0,00 m/s		
[Menü+0+2]	Zeigt den aktuellen Durchfluss und die positive Tagessumme an. Die Einstellung für die positive Tagessumme sind im Menü mit der Nummer 31 ersichtlich. Wenn die Summierung ausgeschalten wird erscheint der letzte Wert am Display.	FLOW 0,00 m ³ /h *R POS 0x1 m ³		
[Menü+0+3]	Zeigt den aktuellen Durchfluss und die negative Tagessumme an. Die Einstellung für die negative Tagessumme sind im Menü mit der Nummer 31 ersichtlich. Wenn die Summierung ausgeschalten wird erscheint der letzte Wert am Display.	FLOW 0,00 m ³ /h *R NEG 0x1 m ³		
[Menü+0+4]	Zeigt das aktuelle Datum, die aktuelle Zeit und den aktuellen Durchfluss an. Die Einstellungen für das Datum und Zeit finden Sie im Menü mit der Nummer 60.	01.01.21 00:00:00 *R FLOW 0,00 m³/h		
[Menü+0+5]	Zeigt die Wärmekapazität an.	EFR 0.0000 GJ/h*R EPT 0X1 GJ		
[Menü+0+6]	Zeigt die Kältekapazität an.	EFR 0.0000 GJ/h*R		
		EPT 0X1 GJ		
[Menü+0+7]	Zeigt die Ein- und Auslasswassertemperatur an.	EPT0X1GJIn-Out-DeltaC6.218.21-2.00		
[Menü+0+7] [Menü+0+8]	Zeigt die Ein- und Auslasswassertemperatur an. Zeigt die Systemfehlercodes an.	EPT0X1GJIn-Out-DeltaC6.218.21-2.00*R Normalzustand		
[Menü+0+7] [Menü+0+8] [Menü+0+9]	Zeigt die Ein- und Auslasswassertemperatur an. Zeigt die Systemfehlercodes an. Zeigt die positive Tagessumme an.	EPT0X1GJIn-Out-DeltaC6.218.21-2.00*R NormalzustandPositive Tagessumme 0,00 m³/h		
[Menü+0+7] [Menü+0+8] [Menü+0+9] [Menü+1+0]	Zeigt die Ein- und Auslasswassertemperatur an. Zeigt die Systemfehlercodes an. Zeigt die positive Tagessumme an. Geben Sie den äußeren Rohrumfang ein.	EPT0X1GJIn-Out-DeltaC6.218.21*R NormalzustandPositive Tagessumme 0,00 m³/hRohrumfang 0,00 mm		
[Menü+0+7] [Menü+0+8] [Menü+0+9] [Menü+1+0]	Zeigt die Ein- und Auslasswassertemperatur an. Zeigt die Systemfehlercodes an. Zeigt die positive Tagessumme an. Geben Sie den äußeren Rohrumfang ein. Geben Sie den Rohraußendurchmesser ein. Das Rohr außen muss zwischen 10 mm und 6000 mm liegen.	EPT0X1GJIn-Out-DeltaC6.218.21*R Normalzustand-2.00*R Normalzustand-2.00Positive Tagessumme 0,00 m³/h-2.00Rohrumfang 0,00 mm-2.00Rohraußendurchmesser 0,00 mm-2.00		

[Menü+1+3]	Geben Sie den Innendurchmes	sser des Rohrs ein.	Rohrinnendurchmesser 52 mm			
[Menü+1+4]	Hier kann das Rohrmaterial m ausgewählt werden. Es Materialien zur Wahl:	Rohrmaterial 0. Stahl				
	0.Kohlenstoffstahl51.Edelstahl62.Gusseisen73.Duktiles Gusseisen84.Kupfer9Sobald Punkt 9 ausgewählt istin Windows M15 eingegeben w	5. PVC 6. Aluminium 7. Asbest 8. Glasfaser Epoxid 9. Sonstige t, muss die entsprech verden.	lharz nende Rohrsondengeschwindigkeit			
[Menü+1+5]	Geben Sie die Rohrschallgeschwindigkeit ein. Diese Funktion wird verwendet wenn in Fenster M14 Punkt 9 "Sonstiges" ausgewählt ist.Rohrschallgeschwindigkeit 2800 m/sAndernfalls kann dieses Fenster nicht angezeigt werden.					
[Menü+1+6]	Hier kann das Liner-Material a Folgende Optionen stehen zur	ausgewählt werden. ⁻ Verfügung:	Liner Material			
	 Keine, kein Liner Einnahme von Epoxidhar: Gummi Mörtel Polypropylen Polystrol Punkt 11 "Sonstiges" ist verfüglvorherigen zehn Positionen er entsprechende Liner-Schallge	 6. Styropor z 7. Polyester 8. Polyethylen 9. Ebonit 10. Teflon 11. Sonstiges bar, um andere Mater nthalten sind. Sobald eschwindigkeit im Fer 	rialien einzugeben, die nicht in den "Andere" ausgewählt ist, muss die nster M17 eingegeben werden.			
[Menü+1+7]	Geben Sie die Schallgeschwin ein. Diese Funktion wird nur v Punkt 11 "Sonstiges" in M16 aus	ndigkeit des Liners verwendet wenn sgewählt ist.	Liner Schallgeschwindigkeit 2270 m/s			
[Menü+1+8]	Geben Sie die Dicke des Liner Es muss ein Liner in Fenster sein, um diese Funktion zu ve	rs ein. M16 ausgewählt rwenden.	Dicke des Liners 10 mm			
[Menü+2+0]	2+0] Wählen Sie den Flüssigkeit-Typ aus. Folgende Optionen stehen zur Verfügung:		Liner Material			
	 Wasser Meerwasser Kerosin Benzin Heizöl Rohöl Propan (-45°C) Butan (0°C) "Andere" bezieht sich auf jede muss im Fenster M21 eingege 	 8. Sonstiges 9. Dieselöl 10. Rizinusöl 11. Erdnussöl 12. Benzin #90 13. Benzin #93 14. Alkohl 15. Wasser (12) e Flüssigkeit. Die rele ben werden. 	5°) vante Schallgeschwindigkeit			

[Menü+2+9]	Dieser Parameter wird verwendet, um die möglichen Probleme zu überwinden, die normalerweise auftreten, wenn das zu		Leeres Rohr Einstellungen [29 0			
	normalerweise auffreten, wenn das zu messende Rohr leer ist. Da Signale durch die Roh kann der Durchflussmesser bei der Messung eine Durchfluss ablesen. Um dies zu verhindern, könne Signalqualität unter diesen Wert fällt, stoppt die M Durchflussmesser bereits in der Lage ist, die Mes leer ist, sollt in diesem Fenster auch ein Wert im B werden, um sicherzustellen, dass keine Messung leer ist. Es sollte verstanden werden, dass das Ins einem leeren Rohr korrekt zu funktionieren.			nrwand übertragen werden können, es Leerrohrs immer noch einen en Sie einen Wert angeben. Wenn die Aessung automatisch. Wenn der ssung einzustellen, wenn das Rohr Bereich von 30 bis 40 eingegeben durchgeführt wird, wenn das Rohr sstrument Nodesigned ist, um auf		
[Menü+3+0]	Metrische Sytsemeinheit Wählen Sie die Maßeinheit wie folg 0. Metrisch 1. Englisch Der werkseitige Standardwort ist	gt aus:	ch	Metrische Sys Mit Enter start	temeinh ten	neiten
[Menü+3+)	Folgende Optionen für Durchflussrateneinheiten stehen	zur Ve	rfügung:	Opt. Durchflus	ssratene	inheiten
	0. Kubikmeter (m³) 1. Liter (l) 2. USA Gallonen (GAL) 3. Kaiserliche Gallonen (Imp mg) 4. Millionen Gallonen (mg) 5. Kubikfuß (cf) 6. USA Fässer (US bbl) 7. Imperial Fässer (Imp bbl) 8. Ölfässer (Öl bbl) Folgende Zeiteinheiten stehen zur Verfügung: Tag/Stunde min/sek Der werkseitige Standardwert ist Kubikmeter/St		igung: meter/Stui	nde.		
[Menü+3+2]	Wählen Sie Totalisatoreinheiten aus. Die verfügbaren Einheiten sind wie folgt identisch mit denen in Fenster M31. Der Benutzer kann Einheiten nach Bedarf auswählen. Der werksseitige Standardwert ist Kubikmeter.		Totalisatorein Kubikmeter (n	heiten n³)	[32	
[Menü+3+3]	Der Totalisator-Multiplikator fungiert als Funktion, um den Totalisator-Anzeigebereich zu erhöhe. In der Zwischenzeit kann der Totalisator-Multiplikator gleichzeitig auf den positiven Totalisator, den negativen Totalisator und den Netto-Totalisator angewendet werden. Folgende Optionen stehen zur Verfügung:		Totalisator-Mu 0. x0,0	ıltiplikat 01 (1E-3)	or)	
	0. x 0,001 (1E-3) 1. x 0,01 2. x 0,1 3. x 1 Der werkseitige Standardfaktor i	4. 2 5. 2 6. 2 7. 2	x 10 x 100 x 1000 x 10000 (1E	+ 4)		

[Menü+2+1]	Geben Sie die Fluide Schallgeschwindigkeit ein. Es kann nur verwendet werden, wenn "Sonstiges" in Fenster M20 ausgewählt ist.	Schallgeschwindigkeit 1482.3 m/s
[Menü+2+2]	Geben Sie die Kinematikviskosität der Flüssigkeit ein. Es kann nur verwendet werden wenn in Fenster M20 ausgewählt ist.	Einheit Durchfluss m³/h
[Menü+2+3]	 Folgende Wandlertypen stehen zur Verfügung: 0. Standard 1. Stecken Sie Typ B45:(W211 Typ Einfügung) 2. Stecken Sie den Typ W110 ein 3. Stecken Sie den Typ W101 ein 	Wandlertypen 0. Standard
[Menü+2+4]	 Es stehen drei Montagemethoden zur Verfügung: 0. V (Schallwelle prallt 2 mal ab) 1. Z (Schallwelle prallt einmal ab) 2. N (kleine Pfeile, Schallwelle prallt 3 mal ab) 	Montagemethoden 0. V
[Menü+2+5]	Aufnahmermontageabstand (dieser Wert wird vom Durchflussmesser berechnet). Der Bediener muss den Wandler entsprechend dem angezeigten Aufnehmerabstand montieren (stellen Sie sicher, dass der Aufnehmerabstand während der Installation genau gemessen wird). Das System zeigt die Daten automatisch an, nachdem der Rohrparameter eingegeben wurde.	Aufnahmermontageabstand 159.86 mm
[Menü+2+6]	Laden und speichern Sie die Parameter. Sie können 18 verschiedene Methoden laden und speichern. 0. Zu speichernder Eintrag 1. Eingabe zum Laden 2. Zum Stöbern Wählen Sie "Eintrag speichern", drücken Sie Enter. Ein ID-Code und die ursprünglichen Parameter werden im Fenster angezeigt. Drücken Sie A V um den ID-Code zu verschieben, dann drücken Sie Enter, um die aktuellen Parameter im aktuellen ID-Raum zu speichern. Wenn Sie "Eintrag zum Laden"auswählen, drücken Sie Enter. Wenn Sie "Eintrag zum Laden"auswählen, drücken Sie Enter. Menn Sie "Eintrag zum Laden"auswählen, drücken Sie Enter.	
[Menü+2+7]	Zeigt den Querschnittsbereich innerhalb des Rohrs an.	Querschnittsbereich 31415,9 mm²
[Menü+2+8]	Wählen Sie "Ja", um das letzte gute Durchflusssignal anzuzeigen, wenn das Durchflussmessgerät einen schlechten Signalzustand aufweist. Diese Funktion ermöglich Datenberechnung ohne Unterbrechung.	Halten mit schlechtem Signal NO t eine fortgesetzte

[Menü+3+4]	Netto-Totalisator ON/OFF "ON" zeigt an, dass der Totalisator eingeschaltet ist, während "OFF" anzeigt, dass er ausgeschaltet ist. Wenn es ausgeschaltet ist, der Netto-Totalisator wird im Fenster angezeigt, M00 ändert sich nicht. Werkseinstellung ist "ON".	Netto-Totalisator ON	[34		
[Menü+3+5]	Ein-/Aus-positiver Totalisator. "ON" zeigt den Durchflussmesser an und beginnt mit der Summierung des Werts. Wenn dieser ausgeschaltet ist, wird der positive Totalisator in Fenster M02 angezeigt. Werkseinstellung ist "ON".	Positiver Totalisator ON	[35		
[Menü+3+6]	Negativer Totalisator EIN/AUS ON/OFF negativer Totalisator. "ON" zeigt den eingeschalteten Totalisator an. Wenn dieser	Negativer Totalisator ON	[36		
	ausgeschaltet ist, wird der negative Totaliasator in Fenster M03 angezeigt. Werkseinstellung ist "ON	J".			
[Menü+3+7]	Zurücksetzen des Totalisators; Alle Parameter werden zurückgesetzt.	Zurücksetzen des Totali ON	sators		
	Urucken Sie Enter, bewegen Sie 🔥 🔽 um "JA" oder "NEIN" auszuwählen. Nachdem "JA"				
	ausgewählt wurde, werden die folgenden Optionen verfügbar: Keine Alle NET-Totalisator POS-Totalisator NEG zurücksetzen:				
	Wenn der Benutzer alle bereits eingestellten Parameter löschen möchte, kehren				
	Sie zu den Werkseinstellungen zurück und wählen Sie "zurücksetzen". Danach wird automatisch auf die werksseitigen Standardeinstellungen zurückgekehrt.				
Δ	ACHTUNG				
<u>/!</u> \	Dieser Vorgang löscht die gesamten Benutzerdaten und wird als Werkseinstellung zurückgesetzt. Bitte überlegen Sie sorgfältig, bevor Sie diese Operation durchführen.				
[Menü+3+8]	Der manuelle Totalisator ist ein separater Totalisator. Drücken Sie Enter um zu starten,	Manuelle Totalisator ENT	[38		
	und drücken Sie Enter, um zu stoppen. Es wird verwendet zur Durchflussmessung und Berechnung.				
[Menü+4+0]	 Der Dämpfungsfaktor reicht von 0~999 Sekunden. 0 zeigt keine Dämpfung an; 999 gibt das Maximum an Dämpfung an. Die Dämpfungsfunktion stabilisiert den Durchfluss. Sein Prinzip ist das gleiche wie in einem einteiligen RC Filter. Der Dämpfungsfaktorwert entspricht der Schaltungszeit konstant. In der Regel wird ein Dämpfungsfaktor von 3 bis 10 in Anwendungen empfohlen. 	Dämpfungsfaktor 10 sek	[40		

[Menü+4+1]	Der Grenzwert für niedrigen Durchfluss wird verwendet, um das System bei niedrigeren und kleineren Durchflüssen als "0"-Wert anzuzeigen, um eine ungültige Summierung zu vermeiden. Wenn der Grenzwert beispielsweise auf 0,03 festgelegt ist, nimmt das System alle gemessenen Strömungsgeschwindigkeitswerte von - 0,03 bis + 0,03 als "0" an. Im Allgemeinen wird 0,03 in den meisten Anwendungen empfohlen.	Grenzwert für niedrigen Durchfl. 0,01 m/s		
[Menü+4+2]	Statisches Null setzen Wenn sich die Flüssigkeit im statischen Zustand befindet, lautet der angezeigte Wert genannt "Nullpunkt". Wenn "Nullpunkt" nicht bei Null in der Durchflussmesser, die Differenz wird hinzugefügt in die tatsächlichen Durchflusswerte und Messdifferenzen wird im Durchflussmesser auftreten. Der Wert Null muss durchgeführt werden, nachdem die Aufnehmer installiert und die Strömung im Rohr ist in der absoluten statischer Zustand (keine Flüssigkeitsbewegung im Rohr). Somit ist die "Nullpunkt" durch unterschiedliche Rohrmontage Standorte und Parameter können eliminiert werden. Drücken Sie	Einst. Relaisausgang 0. Nicht bereit-t.*R		
 [Menü+4+3]	Wählen Sie "Ja", um den "Nullpunkt" zurückzusetzen.	Nullpunkt zurücksetzen [43 JA		
[Menü+4+4]	Diese Methode wird nicht häufig verwendet. Es ist nur geeignet für erfahrene Bediener, um unter Bedingungen Null zu setzen wenn es nicht vorzuziehen ist, andere Methoden zu verwenden. Geben Sie den Wert manuell ein um zum Messwert addieren, um den tatsächlichen Wert zu erhalten. Zum Beispiel: Ist-Messwert =250 m3/H Wertabweichung =-10 m3/H Durchflussmesseranzeige = 240 m3/h Normalerweise legen Sie den Wert auf "0" fest.	Manueller Nullpunkt [44 JA		
[Menü+4+5]	Der Skalierungsfaktor wird verwendet, um die Befunde der Messungen zu modifizieren. Der Benutzer kann einen nummerischen Wert eingeben (andere als "1") entsprechend den tatsächlichen Kalibrierergebnissen.	Skalierungsfaktor [45 1		
[Menü+4+6] Netzwerk IDN Eingabesystem-Identifizierungscode, diese Zahlen können ausgewählt sein aus 0 ~ 255, außer 13 (0DH ENTER), 10 (0AH Newline), 42 (2AH*) und 38 (26H&) sind reserviert. Die System-IDN wird verwendet, um den Durchflussmesser zu identifizieren zu einem Netzwerk.		Netzwerk I DN 88	[46	
--	--	-----------------------------	---------------	-----
[Menü+4+7]	Systemsperre Sperren Sie das Instrument. Sobald das System gesperrt ist, sind alle Änderungen am System verboten, aber die -Parameter sind lesbar. Eingabe Ihreres Passwortes ist die einzige Möglichkeit um das Gerät zu, "Entsperren" Das Passwort setzt sich aus 6 Zahlen zusammen. (bitte wenden Sie sich so schnell wie möglich an den Vertreter oder Hersteller, sobald das Passwort verloren geht.)	Systemsperre ***gespe	[47 rrt***	
[Menü+4+8]	Schnittkorrektur EIN: Öffnen Sie die Abschnittskorrekturfunktion; AUS: Schließen Sie die Abschnittskorrekturfunktion (optional)	Schnittkorrektur AUS		
[Menü+4+9]	Segmentierte Korrektur Sie müssen das Passwort "115800" eingeben und dann auf Enter um zu erweitern. Erweitern Sie nur im aktuellenPunkt. Es wird automatisch heruntergefahren, wenn der Strom unterbrochen wird. Sie können den Korrekturkoeffizienten für 16 Gruppen für die Abschnittskorrektur der Messergebnisse einstellen. Der Benutzer kann den tatsächlichen Skalierungsfaktor eingeben, bezugnehmen auf die Kalibrierungsergebnisse.	Segmentierte Kor Eintrag	rektur	[49
[Menü+5+0]	Einstellungen für das Zeitintervall für die Datenerfassung von SD-Karten Intervalleinstellungen Das Intervall kann im Bereich von 1 ~ 60 Sekunden ausgewählt werden. Drücken Sie Enter, das Display zeigt ">" in der zweiten Zeile an, geben Sie das erforderliche Datenerfassungsintervall ein, und drücken Sie dann erneut Enter. Das Datenerfassungsintervall ist festgelegt. Der werkseitige Standardwert ist 5.	Datenintervall 2-Sel	[50 <.	

[Menü+5+1]	Energierekord ON / OFF Wenn der Energierekord als "ON" eingestellt ist, kann die SD-Karte, Wärmedaten aufzeichnen		Energie	rekord ON / OFF OFF	
	Wenn sie au die Wärmed Voreinstellu	f "OFF", SD eingestellt ist, zeichnen Si aten nicht auf. Die werkseitige ng ist "AUS".	9		
[Menü+5+2]	Analogeinga Anzeige des	ng A 1 analogen Eingang A 1, Analogwert.	A 1 Wert	[52 12,000	
[Menü+5+3]	Analogeinga Anzeige des	ang A 2 5 analogen Eingang A 2, Analogwert.	A 2 Wert	[53 12,000	
[Menü+5+4]	Analogeinga Anzeige des	ang A 3 5 analogen Eingang A 3, Analogwert.	A 3 Wert	[54 12,000	
[Menü+5+5	Optionen für	den aktuellen Schleifenmodus	Energieto	otalisator zurücks JA	etzen
0. 4-20mA		richten Sie den Ausgangsbereich vo	n 4-20mA	ein	
1. 0-20mA		richten Sie den Ausgangsbereich vo	n 0-20mA	ein	
2. 0-20mA R	s232	kann über die serielle Schnittstelle g	jesteuert v	verden	
3. 20-4-20mA		richten Sie die CL-Ausgangsbereiche von 20-4-20mA			
4. 0-4-20mA	richten Sie die CL-Ausgangsbereich	von 0-4-2	0mA		
5. 20–0–20mA richten Sie die CL-Ausgangsbereich			von 20-0-	20mA	
6. 4-20mA vs. Vel richten den CL-Ausgangsbereich vo entsprechende Strömungsgeschwi			n 4-20mA digkeit		
7 / 20m A		agan Energia richtet den CL Leictu	nacharaich	$a = \frac{1}{20}$	

7. 4-20mA gegen Energie richtet den CL-Leistungsbereich ab 4-20mA entsprechende Wärmekapazität.

Der serielle Anschluss steuert den Ausgang gemäß dem Befehl und Parameter, der in der RS232 zur Ausgabe eines

bestimmten Stromwert durch die Stromschleife. Die Befehlsformate werden in den Befehlserklärungen zu serielle Anschluss erläutert.

Wenn es beispielsweise notwendig ist, einen 6mA-Strom durch die Stromschleife auszugeben, kann es realisiert werden, indem man Window M56 auf den Modus "0-20mA Via RS232" stellt und einen Befehl als "A06 (CR)" gibt. Die Funktion ist in der Lage, den Durchflussmesser dazu zu bringen, ein Regelventil bequem zu betreiben.

Weitere unterschiedliche aktuelle Ausgangskennlinien sind in den obigen Abbildungen dargestellt. Der Benutzer kann einen von ihnen auswählen nach seinen tatsächlichen Anforderungen.

In den sechs oben gezeigten Diagrammen fließen F0mA oder F4mA dies gibt den Wert an, den der Benutzer in Fenster M57 eingegeben hat; und der Fluss F20mA gibt den Wert an, den der Kunde in Fenster M58 eingegeben hat. In den Modi 420mA und 0-20mA können F0mA (oder F4mA) und F20mA als positiver oder negativer Durchflusswert ausgewählt werden, solange die beiden Werte nicht gleich sind.

Bei den Modi 20-4-20mA und 20-0-20mA ignoriert der Durchflussmesser den positiven und negativen Wert des tatsächlichen Durchflusses; Daher müssen sowohl F0mA (oder F4mA) als auch F20mA als positive Durchflusswerte ausgewählt werden.

Im Modus 0-4-20mA muss F0mA als negativer Wert und F20mA als positiver Wert ausgewählt werden. Darüber hinaus wird im Modus 4-20mA der Ausgangsstrom als Geschwindigkeit angegeben.

[Menü+5+6]	CL 4mA Ausgangswert Setzen Sie den CL-Ausgangswert entsprechend dem Durchflusswert auf 4mA oder OMA. (4mA oder 0mA werden bestimmt durch die Einstellungen in Fenster M56). Die Optionen der Durchflusseinheit sind genauso wie in Fenster M31. Wenn "20mA vs Vel." in Fenster M55 ausgewählt ist, die Einheit sollte als m / s eingestellt werden.	CL 4mA Ausgangswert 0 m3/h
[Menü+5+7]	20mA Ausgangswert Setzen Sie den CL-Ausgangswert entsprechend dem Durchflusswert auf 20 mA. Die Durchflusseinheit ist die gleiche wie in Fenster M31. Wenn Sie "4-20mA vs Vel." die Werteinheit in M55 auswählen. Die Einheit sollte als m / s eingestellt werden	CL 20mA Ausgangswert 14400 m³/h

[Menü+5+8]	CL-Check-Verifizierung Überprüfen Sie, ob die aktuelle Schleife in der Fabrik kalibriert wurde. Drücken Sie Enter, dann A S Schwart zur Anzeige von OmA, 4mA bis 24mA und Überprüfen Sie gleichzeitig mit einem Amperemeter, ob CL-Ausgangsklemmen 16 und 17 mit dem angezeigten Werten stimmen. Es ist notwendig, die CL neu zu kalibrieren, wenn die zulässige Toleranz überschritten wird. Weitere Informationen finden Sie unter "Kalibrierung von Analogausgängen".	CL Che Drücke	ck-up ENT wenn be	[58 ereit
[Menü+5+9]	CL-Stromausgang CL-Stromausgang anzeigen. Das Display von 10.0000mA gibt an, dass der CL Stromausgangswert 10,0000 mA beträgt. Wenn die Differenz zwischen Anzeige des Wertes und CL- Ausgabewert zu groß ist, muss die aktuelle Schleife entsprechend neu kalibriert werden.	CL 4mA	Ausgangswe 0 m3/h	rt
[Menü+6+0]	Datums- und Uhrzeiteinstellungen Datums- und Uhrzeitänderungen werden in diesem Fenster vorgenommen. Das Format für die Einstellung der Einstellzeit ist 24 Stunden. Presse HNO warten, bis ">" erscheint, die Änderung kann nun vorgenommen werden.	YY-MM-E 03-04-04	D	HH:MM:SS 10:05:04
[Menü+6+1]	20mA Ausgangswert Setzen Sie den CL-Ausgangswert entsprechend dem Durchflusswert auf 20 mA. Die Durchflusseinheit ist die gleiche wie in Fenster M31. Wenn Sie "4-20mA vs Vel." die Werteinheit in M55 auswählen, solle die Einheit als m / s eingestellt werden.	Ultrasch S/N=050	all-Durchflus 71188	smesser
[Menü+6+2]	Einstellungen für die serielle Schnittstelle Dieses Fenster wird für die Einstellung der seriellen Schnittstelle verwendet. Serieller Anschluss wird verwendet, um mit anderen Instrumenten zu kommunizieren. Das Einstellung der Parameter der seriellen Schnittstelle des Geräts, das wendet die serielle Schnittstelle, die Verbindung muss konsistent sein. Die ersten ausgewählten Daten zeigen die Baudrate an, 9600, 19200, 38400, 56000, 57600, 115200 sind verfügbar. Die zweite Option gibt das Paritätsbit an, None No Verifizierung). Datenlänge auf 8 festgelegt; Stoppbitlänge auf 1 festgelegt. Der werkseitige Standardparameter für die serielle Schnittstelle ist "9600, 8, Keine, 1".	RS-232 9600,	Einrichtung Nichts	[62

[Menü+6+3]	All Wertebereich Geben Sie im Fenster 63 den Temperaturwert ein, den (mA und 20mA als Analogoingang vertreten	A 1 Wertebereich 10-100	[63
	In diesem Beispiel Fenster "10" repräsentiert 4mA als entsprechender Temperaturwert, "100" für 20mA als entsprechender Temperaturwert.		
[Menü+6+4]	Al2 Wertebereich Geben Sie im Fenster 64 den Temperaturwert ein, der 4mA und 20mA Analogeingang vertreten. Das Fenster "10" repräsentiert 4mA entsprechend dem Wert, "100" repräsentiert 20mA entsprechen dem Wert.	A 2 Wertebereich 10 - 100	[64
[Menü+6+5]	Al3 Wertebereich Geben Sie im Fenster 65 den Temperaturwert ein, der 4mA und 20mA Analogeingang vertreten. Das Fenster "10" repräsentiert 4mA entsprechend dem Wert, "100" repräsentiert 20mA entsprechen dem Wert.	A 3 Wertebereich 10-100	[65
[Menü+6+7]	FO-Frequenzbereich einstellen Richten Sie eine niedrige FO-Frequenz und eine hohe FO-Frequenz ein. Die hohe FO muss höher sein als die niedrige FO Frequenz. Es reicht von 1-9999Hz. Die werkseitige Standardeinstellung ist 1~ 1001 Hz. Hinweis: Der Frequenzausgang wird durch OAT übertragen; Daher muss das OAT auf das Symbol Frequenzausgabemodus gestellt werden. (Wählen Sie "13. FO" in M78)	FO-Fequenzbereich 1 - 5000	
[Menü+6+8]	Niedriger FO-Durchfluss Bezeichnet den entsprechenden Durchflusswert wenn die Ausgangssignalfrequenz auf der niedrigsten FO-Frequenz ist. Wenn beispielsweise die niedrige FO-Frequenz 1000 Hz beträgt, beträgt die niedrige FO-Durchflussrate 100 m ³ / h. Wenn der Frequenzausgang 1000 Hz beträgt, beträgt der vom Durchflussmesser gemessene Niedrigstrom in diesem Moment 100 m ³ /h.	Niedriger FO-Durchfluss 0 m³/h	[68
[Menü+6+9]	Hoher LWL-Durchfluss Geben Sie den hohen FO-Durchfluss ein, d. h. den entsprechenden Durchflusswert, wenn das Frequenzausgangssignal die höchste Lichtfrequenz aufweist. Zum Beispiel, wenn die hohe FO Frequenz 3000Hz ist und die hohe FO-Durchflussrate 1000m ³ ist. Wenn der Frequenzausgang 3000 Hz beträgt, beträgt der vom Durchflussmesser gemessene niedrige Durchfluss in diesem Moment 1000 m ³ / h.	Hoher FO-Durchfluss [69 26550 m³/h ^z /h	

[Menü+7+0]	Optionen für LCD-Hintergrundbeleuchtung Wählen Sie die LCD-Bedienelemente mit Hintergrundbeleuchtung." Always On" zeigt an.	LCD Hintergrundbeleuchtung 0. Always ON
	dass die Hintergrundbeleuchtung konstant leuchtet; "Always Off" zeigt an, dass die Hintergrundbeleuchtung ständig ausgeschaltet bleibt. Wählen Sie "Beleuchtung für nn Sekunden" und geben Sie dann die gewünschte Hintergrundbeleuchtungszeit für "n" Sekunden ein. Dies zeigt an, dass die Hintergrundbeleuchtung nach dem Drücken der Taste für "n" Sekunden eingeschaltet bleibt und sich dann automatisch ausschaltet. Diese Funktion spart Energie. Es kann etwa 30mA Stron sparen.	n
[Menü+7+2]	Arbeitstimer Anzeige der summierten Arbeitszeiten des Durchflussmessers seit dem letzten Reset. Es wir von HH:MM:SS angezeigt. Wenn es nötig ist, dies zurückzusetzen, drücken Sie	A 3 Wertebereich [65 00000011:16:38
	"JA".	
[Menü+7+3]	Alarm #1 Niedriger Wert Geben Sie den niedrigen Alarmwert ein. Beide relevanten Alarme sind in Windows M78 und M79	Alarm #1 Niedriger Wert 0 m³/h
	eingeschaltet; Einer der gemessenen Durchflüsse, welcher niedriger als der niedrige Wert ist, aktiviert den Alarm im OCT-Hardware oder Relaisausgangsignal.	
[Menü+7+4]	Alarm #1 Hoher Wert Geben Sie den hohen Alarmwert ein. Beide	Alarm #1 Hoher Wert 14400 m ³ h
	eingeschaltet; eine der gemessenen Durchflüsse, der höher als der hohe Wert ist, aktiviert den Alarm in der OCT-Hardware oder im Relaisausgangssignal.	
[Menü+7+5]	Alarm #2 Niedriger Wert Geben Sie den niedrigen Alarmwert ein. Beide relevanten Alarme sind in Windows M78 und	Hoher FO-Durchfluss [69 26550 m³/h
	niedriger als der niedrige Wert ist, aktiviert den Alarm im OCT-Hardware oder das Relaisausgangssignal.	

[Menü+7+6]	⁻ 6] Alarm #2 Hoher Wert Geben Sie den hohen Alarmwert ein. Beide relevanten Alarme sind in Windows M78			Alarm #2 H 1440	Hoher Wert 0 m³/h		
	und M79 aktiviert; jeder der gemessenen Durchflüsse, der höher ist als der hohe Wert, aktiviert den Alarm im OCT Hardware- oder Relais-Ausgangssignal.						
[Menü+7+7]	Pie Ric Pie	Piepser-Einstellung Richten Sie den Ein-/Aus-Zustand des Piepsers ein.		Piepser-Eir 0.	nstellung ON	[77	
	0. 1. 2. 3. 4. 5. 6. 7. 8	Keine Signal Schlechtes Signal Nicht bereit (No*R) Rückwärtsfluss AO über 100 % FO über 120 % Alarm #1 Alarm #2 Chargenkontrolle	9. 10. 11. 12. 13. 14. 15. 16.	POS Int Puls NEG Int Puls NET Int Puls Energieimpu EIN/AUS übe Flüssigkeit g Tastenstreic Nicht verwe	ils er RS232 gewechselt heln EIN nden		
[Menü+7+8]	OC1 Fol	Γ-Ausgabe einrichten gende Signaloptionen s	stehen zur V	/erfügung:	OCT-Ausga 16. Flüss	ibe Einstellu igkeit gewe	ıng [78 chselt
	0. 1. 2. 3. 4. 5. 6. 7. 8.	Keine Signal Schlechtes Signal Nicht bereit (No*R) Rückwärtsfluss AO über 100 % FO über 120 % Alarm #1 Alarm #2 Chargenkontrolle	9. 10. 11. 12. 13. 14. 15. 16. 17.	POS Int Puls NEG Int Puls NET Int Puls Energieimpu FO FO über RS- EIN/AUS übe Flüssigkeit g Nicht verwe	ils 232C er RS232 gewechselt nden		
[Menü+7+9]	[+9] Relaisausgangs-Einstellung Das Relais ist einpolig und konstant eingeschaltet für externe Gerätesteuerungen, folgende Optionen				chselt		
	0. 1. 2. 3. 4. 5. 6. 7. 8.	Keine Signal Schlechtes Signal Nicht bereit (No*R) Rückwärtsfluss AO über 100 % FO über 120 % Alarm #1 Alarm #2 Chargenkontrolle	9. 10. 11. 12. 13. 14. 15. 16.	POS Int Puls NEG Int Puls NET Int Puls Energieimpu EIN/AUS übe Flüssigkeit g Tastenstreic Nicht verwe	ils er RS232 gewechselt heln EIN nden		

[Menü+8+0] Flow Batch STRG Flow Batch STRG Legen Sie den Eingangsauslöser für die 3. Über RS232 Chargensteuerungsfunktion am Durchflussmesser fest. Folgende Optionen stehen zur Verfügung: 0. Schlüssseleingabe 2. Al2 Up Edge Über RS232 3. 1. A|2 Up Edge [Menü+8+1] Durchfluss-Batch-Controller **Durchfluss-Batch-Controller** Der interne Batch-Controller im 1000 x1 m³ Durchflussmesser ist in der Lage, die Eingangssignale über die Tastatur oder über den analogen Eingang der Serielle Schnittstelle zu steuern. Ausgangssignale können übertragen werden durch OCT oder Relais. Der Flow-Batch-Wert kann in diesem Fenster geändert werden. Der Bildschirm wird in die Stapelsteuerungsanzeige aufgenommen, sobald die Änderung abgeschlossen ist. [Menü+8+2] **Datum Totalisator** 00 03-04-05- - - - - -Folgende Optionen stehen zur Verfügung: >4356,78 m³ 0. Tag 1. Monat 2. Jahr In diesem Fenster ist es möglich, die historische Flow Data Totalizer für jeden Tag der letzten 64 Tage, beliebige Monate für die letzten 64 Monate und jedes Jahr für die letzten 5 Jahre einzusehen. Drücken Sie Enter, verwenden dann $\boldsymbol{\wedge}$ um die Summen in Tagen, Monaten und Jahren zu überprüfen. Um beispielsweise die Gesamtflusssumme für den 18. Juli 2000 anzuzeigen, zeigt die Anzeige "-----" in der oberen rechten Ecke des Bildschirms an, dass sie den ganzen Tag ordnungsgemäß funktioniert hat. Im Gegenteil, wenn "G" angezeigt wird, bedeutet dies, dass der Instrumentengewinn mindestens einmal angepasst wurde. Wahrscheinlich war es an diesem Tag einmal offline. Linke obere Ecke: "00-63" zeigt die Seriennummern an; In der Mitte: "03-04-05" gibt das Datum an; Obere rechte Ecke: "-----" gibt an, dass sich das System normal in diesem Zeitraum befand. Wenn andere Zeichen angezeigt werden, lesen Sie bitte den Abschnitt "Fehlercode und Lösungen."

[Menü+8+3]	Menu+8+3] Automatische Strömungskorrektur Mit der Funktion der automatischen Flusskorrektur kann der in einer Offline-Sitzung verlorene Fluss geschätzt und automatisch angepasst werden. Die Schätzung basiert auf dem Durchschnittswert,		Aut. Stromstörungskorrektur JA
	der aus der Durchflussra Emission und dem gemes dem nächsten Online-Bet dem Zeitraum, in dem das ermittelt wird. Wählen Sie Funktion zu verwenden W diese Funktion abzubrech	te vor der Offline- senen Durchfluss nach rieb, multipliziert mit Messgerät offline war, e "NEIN", um diese /ählen Sie "AUS", um ien.	
[Menü+8+4]	Energieeinheiten Optione Energieeinheiten auswäh voreingestellte Einheit ist	n len. Die werkseitig GJ.Folgende Optionen	Energieeinheiten Optionen GJ/h
	sind verfügbar: 0. Giga Joule (GJ) 2. Mbtu 4. BTU 6. Mwh	1. Kilokalorie (Kc) 3. KJ 5. Kwh 7. TH	
	Folgende Zeiteinheiten st (pro Tag); /Stunde (pro S Minute);/sec (pro Sekun Standardeinheit ist /Stund	ehen zur Verfügung:/Tag tunde); /min (pro de). Die werkseitige de.	
[Menü+8+5]	Spezifische Wärmeauswa Wählen Sie die folgenden	hl 2 Arten von spezifischen	Spezifische Wärmeauswahl RTD Ct128 SHC
	Heizwerten: Drücken Sie die Eingabeta 1.Al Drücken Sie dann die Eing	iste, wählen Sie 0.RTD jabetaste, wählen Sie	
[Menü+8+6]	Temperaturempfindlichkei Wenn die Deltatemperatur eingestellte Empfindlichkei akkumuliert. Stellen Sie d Temperaturbereich von 0	it und Benutzer SHC • kleiner als die eit ist, wird keine Energie en einstellbaren °C bis 10 °C ein. Die	Temperaturempf./Benutzer SHC 0.20 C 4186.8 KJ/MB C
	werkseitige Voreinstellung benutzerspezifische Wärn Energie entsprechend den Heizwert akkumuliert. Der reicht von 1 bis 99999 KJ/r Werkseinstellung ist 4186.	g ist 0,2 °C. Wenn die ne eingestellt wird, wird n benutzerspezifischen ⁻ Einstellungsbereich n3 C.Die 8KJ/m3C.	
[Menü+8+7]	Energie-Totalisator-Schal Wählen Sie "ON" aus, um o	ter den Energy Totalizer zu	Energie-Totalisator-Schalter ON
	Wählen Sie "AUS", um den schließen.	Energietotalisator zu	

[Menü+8+7]	Energie-Totalisator-Schalter Wählen Sie "ON" aus, um den Energy Totalizer zu öffnen Wählen Sie "AUS", um den Energietotalisator zu	Energie-Totalisator ON
[Menü+8+8]	schließen Energie-Multiplikator Wählen Sie den Energie-Multiplikatorbereich: 10-3 ~ 104 (E-3 ~E4)	Energie-Multiplikatorbereich [88 4. x1 (EO)
[Menü+8+9]	Energie-Totalisator zurücksetzen Wählen Sie "JA", um den Wert des Energietotalisators zurückzusetzen.	Energie-Totalisator zurücksetzen NO
[Menü+9+0]	Signalstärke und Signalqualität Anzeige der gemessenen Signalstärke und Signalqualität Q-Wert vor- und nachgelagert. Die Signalstärke wird von 00,0 ~ 99,9 angegeben. Eine Lesung von 00,0 zeigt an, dass kein Signal erkannt wurde, während 99,9. die maximale Signalstärke angibt. Normalerweise soll die Stärke ≥60,0 betragen. Die Signalqualität Q wird durch 00 ~ 99 angezeigt. Daher zeigt 00 das schlechteste Signal an, während 99 das beste Signal anzeigt. Normalerweise sollte der Q-Wert der Signalqualität besser als 50 sein.	Signal und Signalqualität UP: 00,0 DN:00,0 Q=00
[Menü+9+1]	TOM/TOS*100 Anzeige des Verhältnisses zwischen der tatsächlich gemessenen Übertragungszeit und die berechnete Sendezeit nach Kundenanforderung. Normalerweise sollte das Verhältnis 100±3 % sein Wenn der Unterschied zu groß ist, sollte der Benutzer überprüfen, ob die Parameter korrekt eingegeben wurden, insbesondere die Schallgeschwindigkeit der Flüssigkeit und die Installation der Wandler. Diese Daten nützen nichts, bevor das System fertig ist.	TOM/TOS*100 [91 0,0000 %
[Menü+9+2]	Fluide Schallgeschwindigkeit Zeigen Sie die gemessene Flüssigkeitsschallgeschwindigkeit an. Dieser Wert sollte in etwa dem eingegebenen Wert von Fenster M21 entsprechen. Wenn der Unterschied zu groß ist, ist resultiert dies wahrscheinlich aus einem falschen Wert, der in Fenster M21 eingegeben wurde, oder unsachgemäße Installation des Wandlers.	Fluide Schallgeschwinfigkeit 1443,4 m/s

[Menü+9+3]	Gesamtzeit und Deltazeit Anzeige der gemessenen Ultraschall- Durchschnittszeit (Einheit: uS) und Delta-Zeit der	Gesamtzeit und Deltazeit 8.9149uS, -171.09nS
	Upstream- und Downstream-Zeit (Unit: nS). Die Geschwindigkeitsberechnung im Durchflussmesser basiert auf den beiden Messwerten. Die Deltazeit ist der beste Hinweis darauf, dass das Instrument stabil läuft. Normalerweise sollte die Fluktuation des Verhältnisses der Deltazeit unter 20 % liegen. Ist dies nicht der Fall, muss überprüft werden, ob die Aufnehmer ordnungsgemäß installiert sind oder ob die Parameter korrekt eingegeben wurden.	
[Menü+9+4]	Reynolds-Zahl und -Faktor Zeigen Sie die Reynolds-Zahl an, die von dem Durchflussmesser und der Faktor, des	Reynolds-Zahl [94 0.0000 1.0000
	Durchflussmessgerätes berechnet wurde. Normalerweise ist dieser Skalierungsfaktor der Durchschnitt des Linien- und Oberflächengeschwindigkeitsfaktors im Rohr.	
[Menü+9+7]	Optionen für die Korrektur des Installationsabstands Folgende Optionen stehen zur Verfügung:	Korrekt. des Installationsabst. 0.OFF
	0. AUS Deaktivieren Sie die Korrektur des Installationsabstands	
	1. EIN Aktivieren Sie die Korrektur des Installationsabstands	
[Menü+9+8]	Aufbau des Durchflusssensors (Einbauposition des Wandlers Selektion) Folgende Optionen stehen zur Verfügung:	Durchflusssensors Einstellung 1. Ausfall
	0. Einfall 1. Ausfall	
[Menü+9+9]	Optionen für Temperatureinheiten—Celsius°C Fahrenheit °F Wenn Sie °F wählen, wird die Temperatureinheit	Temperatureinheit 0. C
	von Menu 07 und Menü 86 in °F geändert, die spezifische Wärme der Einheit von Menü 86 wird in KJ / m3 * geändert. Die F. SD-Karte zeichnet die Temperatur in ° F auf und Modbus liest das RTD-Temperaturwert in °F.	

[Menü+^+0]	Ein-/Ausschaltzeit So zeigen Sie die Ein-/Ausschaltzeit und die Durchflussrate für die letzten 64 Aktualisierungszeiten, um den Offline-Zeitraum	Ein/Ausschaltzeit [+0 Press ENT wenn bereit
	Durchflussrate. Betreten Sie das Fenster, drücken Sie Enter, um das letzte Update vor den letzten 64 Zeiten der Ein-/Ausschaltzeit und des Ablaufs der Kurswerte anzuzeigen. "ON" auf der rechten Seite zeigt an, dass in dieser Zeit Strom eingeschaltet ist; "00" in der oberen linken Ecke wird das Datum und die Uhrzeit "00-07-18 12:40:12" angezeigt; Die Durchflussrate wird in der unteren rechten Ecke angezeigt.	*EIN 123.65 m ³ /h
[Menü+^+1]	Gesamtarbeitszeit Mit dieser Funktion ist es möglich, die Gesamtsumme der Arbeitszeiten anzuzeigen, seit der Durchflussmesser das Werk verlassen hat. Die Abbildung rechts zeigt an, dass die Arbeitsstunden des Durchflussmessers aus dem Werk 1107 Stunden 1 Minute 41 Sekunden betragen.	Gesamtarbeitszeit [1 00001107:01:41
[Menü+^+2]	Letzte Ausschaltzeit Zeigen Sie die letzte Ausschaltzeit an.	Letzte Ausschaltzeit 03-04-04- 11:33:02
[Menü+^+3]	Letzter Durchfluss Zeigt die letzte Durchflussrate an.	Letzter Durchfluss [+3 100.43 m³/h
[Menü+^+4]	EIN/AUS-Zeiten insgesamt Anzeige der gesamten Ein- / Ausschaltzeiten, seit der Durchflussmesser die Fabrik.	EIN/AUS-Zeiten [+4 40
[Menü+^+6]	Fluide Schallgeschwindigkeit – den Bereich ändern Die im Fenster angezeigten Daten sind Schallgeschwindigkeit Vergleichsschwellenwerte, d. h. wenn die geschätzte mittlere Schallgeschwindigkeit über dem Wert liegt, kann ein Alarm Signal erzeugt werden. Das Alarmsignal kann an die Relais oder OCT ausgegeben werden. Durch die numerischen Einstellungen kann der Ultraschall- Durchflussmesser ein Alarmsignal senden, sobald sich das Medium ändert.	EIN/AUS-Zeiten [+4 40
[Menü+↓+0]	Hardwareanpassungseintrag Bitte beachten Sie Kapitel 4.6 "4-20mA Stromschleife Output" für weitere Details.	Hardwareanpassungseintrag Eintrag

[Menü+↓+1]	Temperaturkalibrierung Bitte beachten Sie Kapitel 11.4 "Temperaturkalibrierung"Methoden" für weitere Details.	Temperaturkalibrierung Press ENT wenn bereit
[Menü+↓+2]	Al-Kalibrierung Schließen Sie den Analogeingang an Standard- 20mA an, geben Sie das Passwort 115800 ein und geben Sie die Kalibrierung ein, A V drücken Sie und passen Sie dann den Al-Wert an den Al- Bereich an die Obergrenze an.	Letzte Ausschaltzeit 03-04-04- 11:33:02

9 FEHLERDIAGNOSE

Das Ultraschalldurchflussmessgerät verfügt über fortschrittliche Funktionen zur Selbstdiagnose und zeigt eventuell auftretende Fehler in der rechten oberen Ecke des Displays in Form eines eigenständigen Codes an. Bei jedem Start des Gerätes wird eine Hardware-Fehlerdiagnose eingeleitet. Somit können etwaige Fehler schnell ermittelt und anschließend behoben werden.

In der nachfolgenden Tabelle ist eine Übersicht über die Fehlercodes und die möglichen Ursachen sowie über die möglichen Lösungen ersichtlich.

CODE	MELDUNG IN MENÜ 8	URSACHE	LÖSUNG
*R	Normalzustand	System läuft normal	-
*	Signal nicht erkannt	 Kein Signal erkannt Falscher Sensorabstand oder zu wenig akustische Koppelpaste Falsche Sensorinstallation Zu große Ablagerungen (Neue) Auskleidung im Inneren der Leitung 	 Befestigen Sie die Sen-soren fest und ord-nungsgemäß auf der Leitung und stellen Sie sicher, dass genügend akustische Koppelpaste aufgetragen ist. Entfernen Sie Rost, abblätternde Farbe oder sonstige Ablagerungen auf der Oberfläche. Überprüfen Sie eigegebenen Parameter Entfernen Sie jegliche Ablagerungen auf der Oberfläche oder wechseln Sie die Messposition Informieren Sie sich genau über die möglichen Ablagerungen und
*G	Verstärkung einst.	–Das Gerät stellt selbstständig die Verstärkung ein	der Leitung. -

Diese Tabelle ist jedoch nur gültig, wenn die Fehler auf falsch eigegebenen Parameter und/oder falsche Signale zurückzuführen sind.

10 PRODUKTÜBERSICHT

10.1 Besonderheiten

Das Ultraschall-Durchflussmessgerät UDM201ist ein hochmoderner universeller Transit-Durchflussmesser, der auf die ARM-COMA-Technologie und die Breitband-Niederspannungs-Pulsübertragung ausgelegt ist.

Obwohl das Gerät hauptsächlich für saubere Flüssigkeitsanwendungen entwickelt wurde, ist es tolerant gegenüber Flüssigkeiten und den geringen Mengen an Luftblasen oder Schwebstoffen, die in den meisten industriellen Umgebungen zu finden sind.

10.2 Spezifikationen

Die Tabelle zeigt einen Überblick über die Spezifikationen des Gerätes hinsichtlich des Anwendungsbereichs, der Funktionen und der Technik.

Messbereich	±0,01 m/s bis ±12,00 m/s
Genauigkeit	±0,5 vom Messwert
Rohrdurchmesser	25 mm bis 5000 mm
Rohrmaterial	Stahl, Edelstahl, Gusseisen, Duktiles
	Gusseisen, Kupfer, PVC, Aluminium, Asbest
	und Fiberglas / Epoxy, Sonstiges
Medium	Wasser, Salzwasser, Kerosin, Benzin, Heizöl, Rohöl, Propan, Blutan, Dieselöl, Rizinusöl, Erdnussöl, Benzin 90 & 93, Alkohol, Wasser. Andere Medien können über Eingabe der Schallgeschwindigkeit eingestellt werden.

ANWENDUNGSBEREICH

FUNKTIONEN UND TECHNIK

Ausgänge	Relaisausgang für Impulse (max. 1Hz) OCT Puls (0-9999 Hz) Analogausgang 0/4-20 mA (max. 750⊡) Frequenzausgang
Kommunikationsschnittstelle	Rs232 & RS485 Modbus
Versorgung	10-36 VDC oder 90 bis 245 VAC
Tastatur	22 Tasten
Display	Zweizeiliges alphanumerisches LC -Display mit Hintergrundbelichtung
Temperaturen im	UDM201: -10 °C bis + 50 °C
Betriebsbereich	Sensoren: -40 °C bis +80 °C
Rel. Feuchte im Betriebsbereich	Bis zu 99 % r.F. (nicht kondensierend)

10.3 Funktionstheorie

Wenn das Ultraschallsignal durch die fließende Flüssigkeit übertragen wird, besteht ein Unterschied zwischen der

vor- und nachgelagerte Transitzeit (Reisezeit oder Flugzeit), die proportional zur Strömungsgeschwindigkeit ist,

Gemäß der folgenden Formel.

$$V = \frac{MD}{\sin 2\theta} \times \frac{\Delta T}{T_{up} \bullet T_{down}}$$

Anmerkung:

- V Mittlere Geschwindigkeit
- M Ultraschall-Reflexionsfrequenz
- D Rohrdurchmesser
- θ Der Winkel zwischen dem Ultraschallsignal und der Strömung
- T_{up} Laufzeit in Vorwärtsrichtung

 T_{down} Laufzeit in umgekehrter Richtung

$$\Delta T = T_{up} - T_{down}$$

10.4 Anwendungen

-Wasser, Abwasser (mit niedrigem Partikelgehalt) und Meerwasser;

-Wasserversorgung und Entwässerungswasser;

-Kraftwerke (Kernkraftwerke, Wärme- und Wasserkraftwerke), Wärmeenergie, Kesselspeisewasser und Energiemanagementsystem;

-Metallurgie und Bergbauanwendungen (z. B. Kühlwasser- und Säurerückgewinnung);

-Erdöl und chemische Erzeugnisse;

-Lebensmittel, Getränke und Pharmazeutika;

-Schiffsbetrieb und -wartung;

-Überwachung der Energiewirtschaft und Wassereinsparung; Zellstoff und Papier;

-Erkennung von Rohrleitungslecks;

-Regelmäßige Inspektion, Verfolgung und Sammlung;

-Energiemessung und -Bilanzierung; Netzwerküberwachungssysteme und Energie-/ Durchflussrechnermanagement.

11 ZUSATZ UND ANHANG

11.1 Anlage 1 - W211 Einfügewandler

11.1.1 Übersicht

Der Einsteckwandler kann über einen Trennkugelhahn in Metallrohrleitungen eingebaut werden (die Installation in Rohrleitungen aus Kunststoff oder anderen Materialien kann einen optionalen Montagesitz erfordern). Der maximale Rohrdurchmesser indem der Einsteckwandler installiert werden kann, beträgt DN2000. Flüssigkeitstemperaturbereich: -10 °C ~ + 80 °C. Sensorkabellänge (9m Standard) kann normalerweise auf bis zu 100 m verlängert werden.

Die Abbildung 1 zeigt ein Diagramm des W211 Einfügewandler.

Der Einsteckwandler ist an seiner Halterung (die an der Messstelle mit dem Rohrabschnitt verschweißt ist) über einen Kugelhahn befestigt. Wenn der Wandler entfernt wird, können Rohrflüssigkeiten durch das Abschalten des Kugelhahns eingedämmt werden. Daher kann die Installation und Absaugung des Messumformers durchgeführt werden, ohne den Rohrleitungsdruck zu entlasten. Eine O-Ring-Dichtung und eine Fugenmutter garantieren die Sicherheit des Benutzers bei der Installation oder dem Betrieb des Wandlers.

Abbildung 1 der Konstruktionszeichnung des W211-Einfügetyp-Wandlers

- 1. Kabel
- 2. Konnektor
- 3. Schloss Mutter
- 4. Kugelhahn
- 5. Montagesockel
- 6. Wandlersonde

11.2 Auswahl des Messpunkts

Um die stärkste Signalstärke und die hochgenauen Messergebnisse zu erhalten, ist es notwendig, vor dem Einbau des Wandlers einen geeigneten Messpunkt auszuwählen. Beispiele für die Messstellenauswahl finden Sie im entsprechenden Abschnitt des Handbuchs.

11.3 Bestimmung des Aufnemerabstandes und der Wandlerinstallation

Der Montageraum des Einsteckwandlers ist der Mitte-zu-Mitte-Lochabstand zwischen den beiden Wandlern (siehe Menü 25). Nachdem Sie den richtigen Parameter eingegeben haben, überprüfen Sie bitte den Montageraum in Menü 25. (Einheit: mm)

Montagemethode:

 Beim Bohren an der Messstelle beträgt der Durchmesser des Bohrlochs 24 mm. Bevor Sie bohren, richten Sie bitte die Lochmitte der Wandlermontagebasis auf die Bohrlochmitte ab, und schweißen Sie es senkrecht auf das Rohr.

2. Schließen Sie den Kugelhahn und schrauben Sie ihn fest an die Montagebasis.

3. Drehen Sie die Sicherungsmutter ab und lösen Sie den Sicherungsring, ziehen Sie den Wandler in die Gelenkmutter und schrauben Sie dann die Gelenkmutter am Kugelhahn an.

4. Öffnen Sie den Kugelhahn und setzen Sie den Wandler ein, messen Sie die Abmessungen von der Außenfläche des Rohres bis zur Front-End-Oberfläche der Handspike-Position, um die folgende Formel zu erfüllen:

H=175 – d

In dieser Formel: H...ist die Montagehöhe (mm) 175...ist die Länge des Wandlers (mm) d...ist die Rohrwandstärke (mm)

5. Befestigen Sie den Sicherungsring an der Fugenmutter, indem Sie sein Loch in den Ortungsstift stecken, ziehen Sie dann die Schraube leicht fest und drehen Sie den Orientierungsgriff, bis er auf die mittlere Position zwischen den beiden Wandlern zeigt und seine Achsen mit den Achsen der Rohrleitung übereinstimmen. Ziehen Sie zum Schluss die Verriegelungsschraube fest und schrauben Sie die Ortungshülse auf die Fugenmutter.

6. Schließen Sie die Wandlerkabel an die entsprechenden vor- / nachgeschalteten (stromaufwärts = rot, stromabwärts = blau) Klemmenenden an. 7. Bitte beachten Sie das folgende Installationsdiagramm:

Abb.11.2

ACHTUNG

Bei horizontalen Rohrleitungen müssen Wandler an den Seiten des Rohres (d. h. in der 3- und 9-Uhr-Position des Rohrs) befestigt werden, um eine Signaldämpfung durch Sedimente am Boden des Rohres oder Luftblasen und Lufteinschlüsse in der Oberseite des Rohres zu verhindern.

11.4 Wandlermontagemethoden

W211 Einsteckwandler Montagemethode: Z-Methode bis M24, es sollte entsprechend der spezifischen Anwendungsbedingungen installiert werden.

11.5 Die 9,5-Z-Montagemethode

Z-Methode ist die am häufigsten verwendete Montagemethode für Einsteck-Ultraschall-Durchflussmesser. Diese ist geeignet für Rohrdurchmesser von 50 mm bis 2000 mm. Um eine hohe Messgenauigkeit zu erreichen, wird das Z-Verfahren bevorzugt für stark verrostete Rohrabschnitte oder mit zu starker Schuppenbildung an der Innenwand. Wenn Sie den Wandler mit der Z-Methode installieren, stellen Sie sicher, dass sich die beiden Wandler und die Pipeline-Mittelachse in derselben Ebene, aber niemals auf der 6., oder 12-Uhr-Positionen befinden.

11.6 Tastenkombination für die Eingabe von Rohrparametern

Zum Beispiel, die Messung des Durchmessers von DN200, Rohraußendurchmesser ist 219mm, Rohrwandstärke ist 6mm, Rohrinnendurchmesser ist 207mm, Messmedium ist Wasser, und das Material ist Kohlenstoffstahl, kein Liner, kann wie folgt betrieben werden:

Schritt 1. Rohraußendurchmesser

Drücken Sie die Tasten Menu **E** , um das Fenster M11 und den Außendurchmesser des Rohrs einzugeben, und drücken Sie dann zur Bestätigung die Enter. (Für den Einsteckwandler, M11-Menü muss der Rohrinnendurchmesser eingegeben werden).

(Für den Einsteckwandler muss das M11-MenüB. in den Innendurchmesser des Rohres eingedrungen)

Schritt 2. Rohrwandstärke Drücken Sie die Taste Menu 21, um das Fenster M12 zu betreten, geben Sie die Rohrwandstärke ein und drücken Sie zur Bestätigung die Enter -Taste.(Die Wandstärke muss 0,01 mm für die Verwendung mit Einstecksensoren betragen.) Schritt 3. Rohrmaterial Drücken Sie die Tasten die Taste um Rohrmaterial auszuwählen. danach drücken Sie die Taste auszuwählen.

Schritt 4. Wandlertyp

Drücken Sie Menu 2 2 asten, um in das Fenster M23 zu gelangen, drücken Sie um den Wandlertyp auszuwählen, und drücken Sie die Enter im dies zu bestätigen. 1. Steckertyp B45 (Einfügewandler vom Typ W211)

Schritt 5. Messwa<u>ndle</u>r-<u>Mon</u>tagemethoden

Drücken Sie die Menu 🕮 2 🖼 4 um das <u>Fens</u>ter <u>M24 a</u>ufzurufen,

drücken Sie Enter drücken Sie die Tasten 🖍 🔽 um die Aufzeichnungsmethode für den Wandler auszuwählen.

Drücken Sie Enterzur Bestätigung. Wählen Sie entsprechend den Rohren vor Ort.

Schritt 6. Passen Sie den Wandlerabstand an

Drücken Sie [Menu] [2] [2] [3] um das Fenster M25 zu betreten, installieren Sie den Wandler genau entsprechend dem angezeigten Aufnehmermontageabstand und der ausgewählten Montagemethode (siehe Installieren der Wandler in diesem Kapitel).

Schritt 7. Messergebnis anzeigen

Drücken Sie Menu Monu in das Fenster M01 zu gelangen. Informationen zu anderen Setups finden Sie in den entsprechenden Informationen im Handbuch.

12 W110 EINFÜGEWANDLER

12.1 Überlblick

Der Einsteckwandler vom Typ W110 (im Folgenden als Steckersensor bezeichnet) kann durch Kugelhahn auf dem Kohlenstoffstahlrohr installiert werden (wenn auf Kunststoffrohren oder anderem Material installiert, muss möglicherweise die Auswahlund andere Kupplung installiert werden, um sie zu installieren). Der maximale Rohrdurchmesser, in dem Einsteckwandler installiert werden können, beträgt DN5000mm. Es kann Temperaturbereiche von -40 bis +80 ° C messen. Die Standardlänge des Kabels beträgt 9 Meter und kann auf 300 Meter verlängert werden.

Nachfolgend finden Sie die spezifische Struktur des Einfügewandlers. Der Einsteckwandler wird über einen Kugelhahn an seinem Montagesockel befestigt. Wenn der Wandler entfernt wird, können Rohrflüssigkeiten durch Abschalten des Kugelhahns eingedämmt werden. Daher kann die Installation und Absaugung des Messumformers durchgeführt werden, ohne den Rohrleitungsdruck zu entlasten. Eine O-Ring-Dichtung und eine Fugennit garantieren die Sicherheit des Benutzers bei der Installation oder dem Betrieb des Wandlers.

12.2 Die Struktur des Q110-Wandlers

- 1. Kabel
- 2. Gebeuat
- 3. Verbinder
- 4. Orientierungsgriff 5. Ortungshülse
- 6. Gelenkmutter
- 7. Kugelhahn
- 8. Montagesockel
- 9. Absolutwertübertragungs-Gehäuse

12.3 Auswahl der Messstelle

Um die stärkste Signalstärke und die hochgenauen Messergebnisse zu erhalten, ist es notwendig, vor dem Einbau des Wandlers einen geeigneten Messpunkt auszuwählen. Beispiele für die Messstellenauswahl finden Sie im entsprechenden Abschnitt des Handbuchs.

12.4 Bestimmung des Wandlerabstandes

Der Montageraum des Einsteckwandlers ist das Zentrum (siehe Menü 25). Nachdem Sie den richtigen Parameter eingegeben haben, überprüfen Sie bitte den Montageraum in Menü 25. (mm). Berechnen Sie den Mitte-zu-Mitte-Lochabstand S zwischen den beiden Wandlern unter Verwendung der folgenden Formel:

L=SP+34 (Einheiten:mm)

In dieser Formel ist SP der Abstandswert, der (vom Durchflussmesser) durch Eingabe der Rohrparameter wie Rohrinnendurchmesser, Rohrwandabmessung usw. berechnet wird. (Einheiten in mm). Montagemethode:

 Bohren an der Messstelle, der Durchmesser Loch ist 40 mm. Lassen Sie bitte vor dem Bohren die Lochmitte der Aufnehmer-Montagebasis auf die Bohrlochmitte richten und dann die Montagebasis des Wandlers vertikal an dieser Position auf der Rohroberfläche schweißen.
 (Wenn der Durchflussmesser unter Druck ohne Durchflussunterbrechung heiß in das Rohr gezapft werden muss, beziehen Sie sich bitte auf die Sitelab-Betriebskonstruktion von DDK electric Hot-Tapping oder entsprechende Geräte.)

2. Ziehen Sie den Kugelhahn sicher an der Montagebasis fest (schalten Sie den Kugelhahn ab).

3. Schrauben Sie die Ortungshülse ab und lösen Sie den Sicherungsring, ziehen Sie den Wandler in die Gelenkmutter ein und ziehen Sie dann die Gelenkmutter auf den Kugelhahn fest.

4. Öffnen Sie den Kugelhahn, setzen Sie den Sensor in das Rohr ein, gleichzeitig das Rohr in die Oberflächengrößenmessung und stellen Sie sicher, dass es der folgenden Formel entspricht:

H=265 – d

In dieser Formel: H...Montagehöhe, der Abstand zwischen der Mitte des Anschlaghebels und außerh. des Rohres 265...ist die Länge des Wandlers (mm) d...ist die Rohrwandstärke (mm)

5. Befestigen Sie den Verriegelungsring an der Fugenmutter, indem Sie das Loch in den Ortungsstift einbauen, ziehen Sie dann die Schraube leicht fest und drehen Sie die Orientierungsgriffeinheit, die sie an der Stichelposition zwischen den beiden Wandlern und ihren Achsen an die Achsen der Rohrleitung anzeigt. Zum Schluss die Verriegelungsschraube anschnallen und die Ortungshülse auf die Fugenmutter schrauben. 6. Schließen Sie die Wandlerkabel an die entsprechenden Upstream/Downstream-Klemmen (Upstream = Rot, Downstream = Blau) an.

ACHTUNG

Bei horizontalen Rohrleitungen müssen Wandler an den Seiten des Rohres (d. h. in der 3- und 9-Uhr-Position des Rohrs) befestigt werden, um eine Signaldämpfung durch Sedimente am Boden des Rohres oder Luftblasen und Lufteinschlüsse in der Oberseite des Rohres zu verhindern.

12.5 Installationsmethode

Es gibt zwei Arten von Montagemethoden für den Einsteckwandler:

Z-Montagemethode und V-Montagemethode . Diese sind im Menü MENU24 eingestellt, und können nach bestimmten Anwendungsbedingungen ausgewählt werden.

12.6 Z-Montagemethode

Die Z-Methode ist die am häufigsten verwendete Montagemethode für Einsteck-Ultraschall-Durchflussmesser, geeignet für Rohre mit einem Durchmesser von 50 mm bis 5000 mm. Aufgrund der starken Signalstärke und der hohen Messgenauigkeit ist das Z-Verfahren für Rohrabschnitte vorzuziehen, die stark verrostet sind oder zu viel Schuppenbildung an der Innenwand aufweisen.

Wenn Sie den Wandler mit der Z-Methode installieren, stellen Sie sicher, dass sich die beiden Aufnehmer und die Rohrleitungsmittelachse an derselben Stelle befinden, jedoch niemals in der 6- oder 12-Uhr-Position. Siehe unten:

Abb.12.2

12.7 V-Montagemethode

Die V-Methode eignet sich für Rohrdurchmesser von 300 mm bis 1200 mm. Es wird verwendet, wenn nur eine Seite des Rohres verfügbar ist (z. B. die andere Seite ist an der Wand).

Siehe unten:

Abb.12.2

13 WH-EINFÜGEWANDLER

13.1 Überblick

Der Einlegewandler vom Typ WH kann über einen Trennkugelhahn in Metallrohrleitungen eingebaut werden und kann in einem Flüssigkeitsbereich von -40 bis +150oC messen. Der maximale Rohrdurchmesser, welche in dem Einsteckwandler installiert werden können, beträgt DN5000 mm Die Länge des Einsteckwandlers beträgt 237 mm. Beachten Sie, dass die Rohrwandstärke des Rohrabschnitts nicht kleiner als 24 mm sein sollte.

Abbildung 2 zeigt ein Diagramm des Einfügewandlers an seiner Montagebasis befestigt (Bestelloption – WH). Der Einsteckwandler ist über einen Kugelhahn an seinem Montagesockel befestigt (der am Messpunkt mit dem Rohrabschnitt verschweißt ist). Wenn der Wandler entfernt wird, können Rohrflüssigkeiten durch Abschalten des Kugelhahns eingedämmt werden. Daher kann die Installation und die Absaugung des Messumformers ohne Entlastung des Rohrleitungsdrucks durchgeführt werden. Eine O-Ring-Dichtung und Fugenmutter garantiert Benutzersicherheit bei der Installation oder dem Betrieb des Wandlers.

13.2 Die Struktur des WH-Wandlers

- 1. Kabel
- 4. Orientierungsgriff
- 5. Ortungshülse
- Gebeugt
 Verbinder
- 6. Gelenkmutter
- 7. Kugelhahn
- 8. Montagesockel
- 9. Absolutwertübertragungs-Gehäuse

13.3 Auswahl der Messstelle

Um die stärkste Signalstärke und die hochgenauen Messergebnisse zu erhalten, ist es notwendig, vor dem Einbau des Wandlers einen geeigneten Messpunkt auszuwählen. Beispiele für die Messstellenauswahl finden Sie im entsprechenden Abschnitt des Handbuchs.

13.4 Bestimmung des Wandlerabstandes

Der Montageraum des Einsteckwandlers ist das Zentrum (siehe Menü 25). Nachdem Sie den richtigen Parameter eingegeben haben, überprüfen Sie bitte den Montageraum in Menü 25. (mm). Berechnen Sie den Mitte-zu-Mitte-Lochabstand S zwischen den beiden Wandlern unter Verwendung der folgenden Formel:

L=SP+34 (Einheiten:mm)

In dieser Formel ist SP der Abstandswert, der (vom Durchflussmesser) durch Eingabe der Rohrparameter wie Rohrinnendurchmesser, Rohrwandabmessung usw. berechnet wird. (Einheiten in mm). Montagemethode:

 Bohren an der Messstelle, der Durchmesser Loch ist 40 mm. Lassen Sie bitte vor dem Bohren die Lochmitte der Aufnehmer-Montagebasis auf die Bohrlochmitte richten und dann die Montagebasis des Wandlers vertikal an dieser Position auf der Rohroberfläche schweißen.
 (Wenn der Durchflussmesser unter Druck ohne Durchflussunterbrechung heiß in das Rohr gezapft werden muss, beziehen Sie sich bitte auf die Sitelab-Betriebskonstruktion von DDK electric Hot-Tapping oder entsprechende Geräte.)

2. Ziehen Sie den Kugelhahn sicher an der Montagebasis fest (schalten Sie den Kugelhahn ab).

3. Schrauben Sie die Ortungshülse ab und lösen Sie den Sicherungsring, ziehen Sie den Wandler in die Gelenkmutter ein und ziehen Sie dann die Gelenkmutter auf den Kugelhahn fest.

4. Öffnen Sie den Kugelhahn, setzen Sie den Sensor in das Rohr ein, gleichzeitig das Rohr in die Oberflächengrößenmessung und stellen Sie sicher, dass es der folgenden Formel entspricht:

H=265 – d

In dieser Formel: H...Montagehöhe, der Abstand zwischen der Mitte des Anschlaghebels und außerh. des Rohres 265...ist die Länge des Wandlers (mm) d...ist die Rohrwandstärke (mm)

5. Befestigen Sie den Verriegelungsring an der Fugenmutter, indem Sie das Loch in den Ortungsstift einbauen, ziehen Sie dann die Schraube leicht fest und drehen Sie die Orientierungsgriffeinheit, die sie an der Stichelposition zwischen den beiden Wandlern und ihren Achsen an die Achsen der Rohrleitung anzeigt. Zum Schluss die Verriegelungsschraube anschnallen und die Ortungshülse auf die Fugenmutter schrauben. 6. Schließen Sie die Wandlerkabel an die entsprechenden Upstream/Downstream-Klemmen (Upstream = Rot, Downstream = Blau) an.

ACHTUNG

Bei horizontalen Rohrleitungen müssen Wandler an den Seiten des Rohres (d. h. in der 3- und 9-Uhr-Position des Rohrs) befestigt werden, um eine Signaldämpfung durch Sedimente am Boden des Rohres oder Luftblasen und Lufteinschlüsse in der Oberseite des Rohres zu verhindern.

13.5 Eingabetasten für Einfügeaufnehmer vom Typ WH-Wandlerrohr

Zum Beispiel, den Durchmesser von DN200 zu messen, Rohraußendurchmesser ist 219mm, Rohrwandstärke ist 6mm, Rohrinnendurchmesser ist 207mm, Messmedium ist Wasser, und Material ist Kohlenstoffstahl, kein Liner, kann folgendermaßen betrieben werden:

Schritt 1. Rohraußendurchmesser

Drücken Sie die Tasten Menu 11 11, um das Fenster M11 und den Außendurchmesser des Rohrs einzugeben, und drücken Sie dann zur Bestätigung die Enter. (Für den Einsteckwandler, M11-Menü muss der Rohrinnendurchmesser eingegeben werden).

(Für den Einsteckwandler muss das M11-MenüB. in den Innendurchmesser des Rohres eingedrungen)

Schritt 2. Rohrwandstärke

Drücken Sie die Taste Menu Main Main (um das Fenster M12 zu betreten, geben Sie die Rohrwandstärke ein und drücken Sie zur Bestätigung die Enter -Taste.(Die Wandstärke muss 0,01 mm für die Verwendung mit Einstecksensoren betragen.)

Schritt 3. Rohrmaterial Drücken Sie die Tasten , um das Fenster M14 aufzurufen, drücken Sie die Taste , danach drücken Sie die Taste

um Rohrmaterial auszuwählen.

danach drücken Sie die Taste Enter zur Bestätigung.

Schritt 4. Wandlertyp

Drücken Sie Menu 2 73 Tasten, um in das Fenster M23 zu gelangen, drücken Sie , um den Wandlertyp auszuwählen, und drücken Sie die Enter um dies zu bestätigen. 3. Steckertyp WH101 (Einfügewandler vom Typ WH101)

Schritt 5. Messwandler-Montagemethoden

Drücken Sie die Menu 📖 📖 🚧 , um das Fenster M24 aufzurufen,

drücken Sie Enter, drücken Sie die Tasten 🔨 🔽 , um die Aufzeichnungsmethode für den Wandler auszuwählen.

Drücken Sie Enter zur Bestätigung. Wählen Sie entsprechend den Rohren vor Ort.

Schritt 6. Passen Sie den Wandlerabstand an

Drücken Sie Menu Maz Was , um das Fenster M25 aufzurufen. Installieren Sie den Wandler genau gemäß dem angezeigten Aufnehmermontageabstand und der ausgewählten Montagemethode L=SP+34 (Einheit: mm) Schritt 7. Messergebnis anzeigen

Drücken Sie Menu (), um in das Fenster M01 zu gelangen. Informationen zu anderen Setups finden Sie in den entsprechenden Informationen im Handbuch.

13.6 Eingabetasten für Einfügeaufnehmer vom Typ WH-Wandlerrohr

Zwei Aufnehmermontagemethoden stehen zur Verfügung. Wählen Sie einen von ihnen im Menü entsprechend den spezifischen Anwendungsbedingungen aus. Diese sind: Z-Methode, V-Methode.

13.7 Installationsmethode

Die Z-Methode ist die am häufigsten verwendete Montagemethode für Einsteck-Ultraschall-Durchflussmesser, geeignet für Rohre mit einem Durchmesser von 50 mm bis 5000 mm. Aufgrund der starken Signalstärke und der hohen Messgenauigkeit ist das Z-Verfahren für Rohrabschnitte vorzuziehen, die stark verrostet sind oder zu viel Schuppenbildung an der Innenwand aufweisen.

Wenn Sie den Wandler mit der Z-Methode installieren, stellen Sie sicher, dass sich die beiden Aufnehmer und die Rohrleitungsmittelachse an derselben Stelle befinden, jedoch niemals in der 6- oder 12-Uhr-Position. Siehe unten:

13.8 V-Montagemethode

Die V-Methode eignet sich für Rohrdurchmesser von 300 mm bis 1200 mm. Es wird wird verwendet, wenn nur eine Seite des Rohres verfügbar ist(Beispiel: die andere Seite ist an einer Wand)

(Siehe unten:)

14 NUTZUNG UND KOMMUNIKATION DER SERIELLEN SCHNITTSTELLENNETZWERKE

14.1 Überlblick

Der Durchflussmesser verfügt über ein perfektes Kommunikationsprotokoll. Es kann auch an einen RS-485-Bus angeschlossen werden.

Für die Vernetzung können zwei Grundschemata gewählt werden, d.h. die analoge Stromausgangsmethode nur mit dem Durchflussmesser

oder das RS232-Kommunikationsverfahren über die serielle Schnittstelle direkt vom Durchflussmesser aus. Diese Methode eignet sich für veraltete Instrumente in alten Überwachungsnetzen ersetzen. Die spätere Methode wird in einem neuen Überwachungsnetzwerk verwendet.

Zu den Vorteilen gehören geringe Hardwareinvestitionen und ein zuverlässiger Systembetrieb.

Wenn die Kommunikationsmethode der seriellen Schnittstelle direkt zur Implementierung eines Überwachungsnetzwerksystems verwendet wird. Der Adressidentifikationscode (im Fenster M46) des Durchflussmessers wird als Netzwerkadresscode verwendet. Als Kommunikationsprotokoll wird ein erweiterter Befehlssatz mit [W] verwendet. So können die analoge Stromschleife und der OCT-Ausgang Offlowmeter verwendet werden, um das Öffnen / Schließen eines Regelventils zu steuern. Der Relaisausgang kann zum Ein- und Ausschalten anderer Geräte verwendet werden. Über den analogen Eingang des Systems können Signale wie Druck und Temperatur eingegeben werden. Das System bietet eine RTU-Funktion zur Durchflussmessung. RS-232 (Kabellänge 0 ~ 15m) oder RS-485 (Kabellänge 0 ~ 1000m) kann direkt für Datenübertragungsverbindungen für eine kurze Entfernung verwendet werden. Die Stromschleife kann in der Mittel- oder Fernübertragung verwendet werden. Wenn der Durchflussmesser in einer Netzwerkumgebung verwendet wird, können verschiedene Operationen von einem Host-Gerät ausgeführt werden, mit Ausnahme der Programmierung des Adressidentifikationscodes, die über die Durchflussmessertastatur erfolgen muss.

Bei der Datenübertragung wird der Befehlsantwortmodus verwendet, d.h. das Host-Gerät gibt Befehle aus und der Durchflussmesser antwortet entsprechend.

Gängiges/spezielles Durchfluss-/Wärmedatenüberwachungssystem, das von unserem Unternehmen entwickelt wurde, kann für Durchflussdaten verwendet werden. Basierend auf den Eigenschaften des Durchflussmessers nutzt das System Soft- und Hardware-Designs voll aus mit Durchflussmesser-Funktionen. Das System ist einfach, klar und zuverlässig im Betrieb.

ACHTUNG

In den im Kommunikationsprotokoll verwendeten Funktionen kann die serielle RS232- und RS485-Kommunikation nicht gleichzeitig verwendet werden.

14.2 Serielle Port-Definition

Durchflussmesser - Rs232: TXD-Senden RXD-Empfang

GND-Boden

PC: PIN 1 leer PIN 4 Masse PIN 7 leer

PIN 2 RXD senden PIN 5 Masse PIN 8 leer PIN 3 TXD senden PIN 6 leer PIN9leer

15 DIREKTE VERBINDUNG ÜBER RS232

15.1 Kommunikationsprotokoll und Verwendung

Der Durchflussmesser unterstützt diese drei Kommunikatonsprotokolle: FUJI Protokoll, MODBUS-C-Protokoll, MODBUS Protokoll;

15.2 FUJI Protokoll

Wählen Sie "0.FUJI" im Menü 96 für FUJI-Protokoll. Das vom Ultraschall-Durchflussmesser verwendete Kommunikationsprotokollformat ist ein erweiterter Satz des Fuji FLV-Serien-Durchflussmesserprotokolls.

Das Host-Gerät fordert den Durchflussmesser auf, zu antworten, indem er ein "Kommando"sendet. Die Baudrate der asynchronen Kommunikation (Primärstation: Computersystem; Sekundärstation: Ultraschall-Durchflussmesser) ist in der Regel 9600BPS. Ein einzelnes Byte-Datenformat (10 Bit): ein Startbit, ein Stoppbit und 8 Datenbits. Überprüft Bit: keine.

Eine Datenzeichenfolge wird verwendet, um grundlegende Befehle auszudrücken, und ein Wagenrücklauf (ENTER) wird verwendet, um das Ende eines Befehls auszudrücken. Das Charakteristische ist, dass die Datenkette flexibel ist. Die Bestellung gilt sowohl für RS232 als auch für RS485. Häufig verwendete Befehle lauten wie folgt:

Kommando	Beschreibung	Datenformat
DQD(cr)(If)注 0	Täglicher sofortiger Durchfluss	±d.dddddE±dd(cr)*1
DQH(cr)(lf)	Stündlicher Momentanfluss zurückgeben	±d.dddddE±dd(cr)
DQM(cr) (lf)	Rückgabe des sofortigen Durchflusses pro Minute	±d.dddddE±dd(cr)
DQS(cr)(lf)	Rückgabe des momentanen Durchflusses pro Sekunde	±d.dddddE±dd(cr)
DV(cr) (lf)	Sofortige Geschwindigkeit zurückgeben	±d.dddddE±dd(cr)
DI+(cr) (lf)	Positiver akkumulativer Fluss zurückgeben	±ddddddE±d(cr)82
DI-(cr) (lf)	Negativer kumulativer Rückfluss	±ddddddE±d(cr)
DIN(cr) (If)	Rückführung des kumulierten Nettodurchflusses	±ddddddE±d(cr)
DIE(cr) (lf)	Rückgabe des summierten Energiewerts	±ddddddE±d(cr)
E(cr) (lf)	Rückgabe des momentanen Energiewerts	±ddddddE±d(cr)

AI1(cr) (lf)	Gibt den analogen Eingangswert von Al1 zurück (Temperatur, Druck, etc.)	±ddddddE±d(cr)
AI2(cr) (If)	Analoger Eingangswert von Al2 zurückgeben (Temperatur, Druck, etc.)	±ddddddE±d(cr)
AI3(cr) (If)	Gibt den analogen Eingangswert von Al3 zurück (Temperatur, Druck, usw.)	±ddddddE±d(cr)
DID(cr) (If)	Rückgabe-Identifikationscode des Instruments (Adresscode)	ddddd(cr) 5 bits in length
DL(cr) (lf)	Rücksignalintensität	UP:dd.d, DN:dd.d, Q=dd(cr)
DS(cr) (If)	Rückgabeprozentsatz der analogen Ausgabe (AO)	±d.dddddE±dd(cr)
DC(cr) (lf)	Aktuellen Fehlercode zurückgeben	*3
DA(cr) (lf)	Alarmsignal von OCT oder RELAY	TR:s,RL:s(cr)*4
DT(cr) (lf)	Aktuelles Datum und Uhrzeit	yy-mm-dd, hh:mm:ss(cr)
M@(cr) (If)	Analoger Schlüsselwert @ an Durchflussmesser gesendet	M@(cr)*5
LCD(cr) (lf)	Aktuell angezeigte Inhalte auf der LCD-Anzeige zurückgeben zeigen	
C1(cr) (lf)	OAT-Betätigung	
C0(cr) (lf)	OAT nicht aktiviert	
R1(cr) (lf)	RELAIS betätigt	
R0(cr) (lf)	RELAY nicht betätigt	
FOdddd(cr) (lf)	Frequenzausgangswert n	Fdddd(cr)(lf)
Aoa(cr) (lf)	Aktueller Ausgangswert a der Stromschleife	AOa(cr)(lf)*6
ESN(cr) (If)	Elektronische Seriennummer zurückgeben	ddddddt(cr)(lf)*7
W	Netzwerkbefehlspräfix numerischer Zeichenfolgenadresse	*8

Р	Präfix des return-Befehls mit check	
&	Funktionszeichen des Befehls "add"	
RING(cr)(lf)	Handshake-Befehl für die Modemanforderung	ATA(cr)(lf)
OK(cr) (lf)	Modem-Antwortsignal	Keine Ausgabe
TEST(cr) (If)	Testen Sie, ob eine SD-Karte vorhanden ist oder nicht.	Es gibt eine Karte, dann geben Sie "OK!" ZURÜCK, KEINE SD-Karte, dann "NOCARD" zurückgeben.
DELETyymmtt(cr) (lf)	Löschen Sie die Datei "jjmmtt", (jj: Jahr, mm: Monat, DD: Tag.)	Löschen Sie es erfolgreich und geben Sie dann "OK!" zurück. wenn nicht, geben Sie "NOCARD" zurück.
READyymmdd(cr) (lf)	Lesen Sie die Datei "jjmmtt", (jjj: Jahr, mm: Monat, tt: Tag.)	Löschen Sie es erfolgreich, und geben Sie dann die Schaltfläche Inhalt; Wenn nicht, senden Sie zurück Datei "NOCARD".
STOP(cr) (lf)	Stoppen Sie die Datenspeicherung	Löschen Sie es erfolgreich und geben Sie dann "OK!" zurück. wenn nicht, geben Sie "NOCARD" zurück.
START(cr) (lf)	Starten Sie die Datenspeicherung	Löschen Sie es erfolgreich und geben Sie dann "OK!" zurück. wenn nicht, geben Sie "NOCARD" zurück.

Anmerkung:

0. (CR)Drückt den Wagenrücklauf aus. Sein ASCII-Wert ist 0DH. (lf) drückt die Leitungseinspeisung aus. Sein ASCII-Wert ist 0AH.

1. "d" drückt die Zahl 0-9 aus. Der Wert 0 wird als +0,000000E+00 ausgedrückt.

2. "d" drückt 0-9 Zahlen aus. Es gibt keinen Dezimalpunkt im Integralteil vor "E"

3. Der Status der Maschine wird durch 1-6 Buchstaben ausgedrückt. Die Bedeutung der Zeichen finden Sie im Abschnitt Fehlercode. Beispiel: "R" und "IH".

4. "s" drückt ON oder OFF oder UD aus. Beispielsweise drückt "TR:ON, RL:ON" aus, dass sich das OAT und das Relais in einem aktivierten Zustand befinden. "TR:DU, RL:DU" drückt aus, dass das OAT und das Relais nicht betätigt werden.

5. "@" drückt den Schlüsselwert aus. Zum Beispiel drückt 30H die Taste "0" aus; Der Befehl "M4" entspricht dem Drücken der Taste "4".

6. "a" drückt den aktuellen Wert aus. Der Wertebereich reicht von 0 bis 20. Beispiel: A02.34567 und A00.2.

7. Acht "dddddddd" drückt die elektronische Seriennummer der Maschine aus. "t" drückt den Maschinentyp aus.

8. Wenn es mehrere Durchflussmesser in einem Datennetzwerk gibt, können die grundlegenden Befehle nicht alleine verwendet werden. Das Präfix W muss hinzugefügt werden. Andernfalls antworten mehrere Durchflussmesser gleichzeitig, was zu Chaos im System führt.

15.3 Funktionspräfix und Funktionszeichen

15.3.1 Präfix P

Das Zeichen P kann vor jedem Basisbefehl hinzugefügt werden. Das bedeutet, dass die übertragenen Daten über eine CRC-Verifizierung verfügen. Die Methode der Zählung der verifizierten Summe wird durch binäre Systemaddition erreicht.

Zum Beispiel: Befehl DI+(CR) (die relativen binären Systemdaten sind 44H, 49H, 2BH, 0DH) übertragene Daten sind + 1234567E + 0m3. (CR) (die relativen binären Systemdaten sind 2BH, 31H, 32H, 33H, 34H, 35H, 36H, 37H, 45H,2BH, 30H, 6DH, 33H, 20H, 0DH, 0AH). Und Befehl PDI+ (CR) übertragen Daten ist +1234567E + 0m3! F7 (CR),"!" bedeutet das Zeichen davor ist das Summenzeichen und die verifizierte Summe der beiden Bytes

danach(2BH+31H+32H+33H+34H+35H+36H+37H+45H+2BH+30H+6DH+33H+20H =(2) F7H). Hinweis: Vor " ! " können keine Daten vorhanden sein, und es kann sich auch um ein Leerzeichen handeln.

15.3.2 Präfix W

Verwendung des Präfixes W: W+ numerischer Zeichenfolgeadresscode + Basisbefehl. Der Wertebereich der numerischen Zeichenfolge ist 0 ~ 65535, außer 13 (0DH Wagenrücklauf), 10 (0AH Zeilenvorschub), 42 (2AH *) und 38 (26H &).

Soll auf den Durchflussmesser (Geschwindigkeit Nr. 12345) zugegriffen werden, kann der Befehl W12345DV(CR) ausgegeben werden. Der entsprechende Binärcode ist 57H, 31H, 32H, 33H, 34H, 35H, 44H, 56H und 0DH.
15.3.3 Funktionszeichen &

Funktionszeichen & können bis zu 5 grundlegende Befehle (Präfix P ist erlaubt) addieren, um einen zusammengesetzten Befehl zu bilden, der zusammen an den Durchflussmesser gesendet wird. Der Durchflussmesser antwortet gleichzeitig. Wenn beispielsweise der Durchflussmesser Nr. 4321 aufgefordert wird, gleichzeitig Folgendes zurückzugeben: 1] sofortiger Durchfluss, 2] momentane Strömungsgeschwindigkeit, 3] positiver Gesamtfluss, 4] Gesamtenergiesumme, 5] Al1 analoger Eingangsstromwert, wird der folgende Befehl ausgegeben:

```
W4321PDQD & PDV&PDI + & PDIE&PBA1 (CR)
Gleichzeitig zurückgegebene Daten sind wahrscheinlich wie folgt:
+0.000000E+00m3/d!AC(CR)
+0.000000E+00m/s!88(CR)
+1234567E+0m3 !F7(CR)
+0.000000E+0GJ!DA(CR)
+7.838879E+00mA!59(CR)
```

15.4 Schlüsselcode

In einer Netzwerkumgebung wird ein Schlüsselcode verwendet, um die Verwendung von Schlüsseln auf dem Hostgerät zu simulieren.

Taste	Schlüsselcode (Hexadezimalsystem)	Schlüsselcode (Dezimalsystem)	ASCH
P41. 0	30H	48	0
eter 1	31H	49	1
EE 2	32H	50	2
HE 3	33H	51	3
1#1 4	34H	52	4
	35H	53	5
100 6	36H	54	6
	37H	55	7
· 8	38H	56	8
vet 9	39H	57	9
4114 ⁴ 974	ЗАН	58	:
	3BH (0BH)	59	;
Menu	3CH (0CH)	60	<
Enter	3DH (0DH)	61	=
	3EH	62	>
V	3FH	63	?

Zum Beispiel wird die Anweisung "M1" über die serielle Schnittstelle eingegeben, was dem Drücken der Taste 1 auf der Tastatur des Ultraschall-Durchflussmessers aleich kommt. Codes:

15.5 MODBUS-Kommunikationsprotokoll

Dieses MODBUS-Protokoll verwendet den RTU-Übertragungsmodus. Der Verifizierungscode verwendet CRC-16-IBM (Polynom ist X16+X15+X2+1, Schildzeichen ist 0xA001), das durch die zyklische Redundanzalgorithmusmethode gewonnen wird.

Der MODBUS-RTU-Modus verwendet Hexadezimalzahlen zur Datenübertragung.

15.5.1 Code unfd Format der MODBUS-Protokollfunktion

Das Durchflussmesserprotokoll unterstützt die folgenden zwei -Funktionscodes des MODBUS:

Funktionscode	Leistungsdatum
0x03	Register lesen
0x06	Einzelnes Register schreiben

15.5.2 MODBUS-Protokoll-Funktionscode 0x03 Verwendung

Der Host sendet das Leseregister-Informationsrahmenformat:

Slave- Adresse	Code der Bedienungsfunktion	Erstes Adressregister	Registernummer	Code überprüfen
1 byte	1 byte	2 bytes	2 bytes	2 bytes
0x01~0xF7	0x03	0x0000~0xFFFF	0x0000~0x7D	CRC (Verifiy)

Der Slave gibt das Datenrahmenformat zurück:

Slave- Adresse	Lesevorgang Funktionscode	Anzahl der Daten Bytes	Daten Bytes	Code überprüfen
1 byte	1 byte	2 bytes	2 bytes	2 bytes
0x01~0xF7	0x03	2xN*	N*x2 (Data)	CRC (Verifiy)

N*=Datenregisternummer

15.5.3 MODBUS-Protokoll Funktionscode0x06 Verwendung

Der Host sendet einen Befehl, um ein einzelnes Registerformationsrahmenformat zu schreiben (Funktionscode 0x06):

Slave- Adresse	Code der Bedienungsfunktion	Adressregister	Datenregister	Code überprüfen
1 byte	1 byte	2 bytes	2 bytes	2 bytes
0x01~0xF7	0x06	0x0000~0xFFFF	0x0000~0xFFFF	CRC (Verifiy)

Der Slave gibt das Datenrahmenformat zurück (Funktionscode 0x06):

Slave- Adresse	Code der Bedienungsfunktion	Adressregister	Datenregister	Code überprüfen
1 byte	1 byte	2 bytes	2 bytes	2 bytes
0x01~0xF7	0x06	0x0000~0xFFFF	0x0000~0xFFFF	CRC (Verifiy)

Der Bereich des Durchflussmessers adressiert 1 bis 247 (Hexadezimal: 0x01 ~ 0xF7) und kann im Menü 46 überprüft werden. Zum Beispiel bedeutet die Dezimalzahl "11", die in Menü 46 angezeigt wird, dass die Adresse des Durchflussmessers im MODBUS-Protokoll 0x0B ist. Der CRC Verify Code übernimmt CRC-16-IBM (Polynom ist X16 + X15 + X2 + 1, Schildzeichen ist 0xA001)die durch die zyklische Redundanzalgorithmusmethode gewonnen wird. Das niedrige Byte des Überprüfungscodes befindet sich am Anfang, während das hohe Byte am Ende ist. Um beispielsweise die Adresse 1 (0x01) im RTU-Modus zu lesen, wenn die momentane Durchflussrate die Stunde als Einheit verwendet (m3/h), d. h. es liest 40005 und 40006 registriert Daten, Der Befehl read lautet wie folgt:

0x01	Durchflussmesser	0x03	Adressfunktionscode
0x00 0x04	Erstes Adressregister	0x00 0x02	Registernummere
0x85 0xCA	CRC-Verifizierungscode		

Die vom Durchflussmesser zurückgegebenen Daten sind (unter der Annahme des aktuellen Durchflusses=1,234567m³/h)

0x01Adresse des Durchflussmessers0x03Funktionscode0x04Datenbytes0x06 0x51 0x3F 0x9E0x3B 0x32Daten (1.2345678) CRC Code überprüfen

Die vier Bytes 3F 9E 06 51 liegt in der IEEE754-Format-Gleitkommaform mit einfacher Genauigkeit von 1,2345678 vor.

Achten Sie auf die Datenspeicherreihenfolge des obigen Beispiels. Mit der C-Sprache, um die Daten zu erklären, können Zeiger direkt verwendet werden, um die erforderlichen Daten in die entsprechende Variablenadresse einzugeben, das niedrige Byte wird an den Anfang gesetzt, wie das obige Beispiel 1.2345678 m/s, 3F 9E 06 61 Daten in der Reihenfolge 06 51 3F 9E gespeichert. Zum Beispiel konvertiert es die Adresse 1 (0x01) in 2 (0x02) im RTU-Modus, um die Daten des Durchflussmessers zu schreiben 44100 als 0x02 registrieren, lautet der Befehl write wie folgt:

0x01	Adresse des Durchflussmesser	0x06	Funktionscode
0x10 0x03	Adressregister	0x00 0x02	Registernummer
0xFC 0xCB	CRC-Verifizierungscode		

Der zurückgegebene Durchflussmesser ist:

0x01	Adresse des Durchflussmesser	0x06	Funktionscode
0x10 0x03	Adressregister	0x00 0x02	Registernummer
0xFC 0xCB	CRC-Verifizierungscode		

15.5.4 Fehlerprüfung

Das Durchflussmessgerät gibt nur einen Fehlercode zurück 0x02.

Um beispielsweise die Adresse 1 (0x01) des Durchflussmessers 40002 zu lesen, registrieren Daten im RTU-Modus, der Durchflussmesser betrachtet sie als ungültige Daten und sendet den folgenden Befehl:

0x01	Adresse des Durchflussmesser	0x03	Funktionscode
0x00 0x01	Adressregister	0x00 0x01	Registernummer
0xD5 0xCA	CRC-Verifizierungscode		

Der zurückgegebene Fehlercode des Durchflussmessers lautet:

0x01	Durchflussmesser Adressfehler	0x83	Codefehler
0x02	Code erweiter	0xC0 0xF1	CRC-Verifizierungscode

15.5.5 MODBUS-Register Adressliste

Der Durchflussmesser MODBUS Register verfügt über ein Leseregister und ein Schreibregister. a. Lesen Sie die Adressliste des Registers (verwenden Sie 0x03 Funktionscode zum Lesen)

PDU Address	Register	Data description	Туре	No. registers*	Remark
\$0000	40001	Flow/s - low word	32 bits real	2	
\$0001	40002	Flow/s - high word			
\$0002	40003	Flow/m - low word	32 bits real	2	
\$0003	40004	Flow/m- high word			
\$0004	40005	Flow/h - low word	32 bits real	2	
\$0005	40006	Flow/h - high word			
\$0006	40007	Velocity - low word	32 bits real	2	
\$0007	40008	Velocity – high word			
\$0008	40009	Positive total - low word	32 bits int.	2	
\$0009	40010	Positive total - high word			
\$000A	40011	Positive total - exponent	16 bits int.	1	
\$000B	40012	Negative total - low word	32 bits int.	2	
\$000C	40013	Negative total - high word			
\$000D	40014	Negative total - exponent	16 bits int.	1	
\$000E	40015	Net total - low word	32 bits int.	2	
\$000F	40016	Net total – high word			
\$0010	40017	Net total – exponent	16 bits int.	1	
\$0011	40018	Energy total - low word	32 bits int.	2	
\$0012	40019	Energy total – high word			
\$0013	40020	Energy total – exponent	16 bits int.	1	
\$0014	40021	Energy flow - low word	32 bits real	2	
\$0015	40022	Energy flow – high word			
\$0016	40023	Up signal int – low word	32 bits real	2	0.000
\$0017	40024	Up signal int – high word			0~99.9
\$0018	40025	Down signal int – low word	32 bits real	2	
\$0019	40026	Down signal int – high word			0~99.9
\$001A	40027	Quality	16 bits int.	1	0 ~ 99
\$001B	40028	Analog output – low word	32 bits real	2	
\$001C	40029	Analog output – high word			Unit: mA

-						
\$001D	40030	Error code – char 1,2	e – char 1,2 String 3		Refer to "Error	
\$001E	40031	Error code – char 3,4			Analysis" for detailed codes	
\$001F	40032	Error code – char 5,6			meanings.	
\$003B	40060	Velocity unit – char 1,2	String	2	Currently	
\$003C	40061	Velocity unit – char 3,4			supports m/s only	
\$003D	40062	Flow unit - char 1,2	String	2	Nets 1	
\$003E	40063	Flow unit - char 3,4			Note 1	
\$003F	40064	Total unit – char 1,2	String	1		
\$0040	40065	Energy unit - char 1,2	String	2		
\$0041	40066	Energy unit - char 3,4			Note 2- the setup is same as M84.	
\$0042	40067	Energy total unit - char 1,2	String	1	10 00000 as 1010-7.	
\$0043	40068	ID code - low word	32 bits int.	2		
\$0044	40069	ID code - high word				
\$0045	40070	Serial number – char 1,2	String	4		
\$0046	40071	Serial number – char 3,4				
\$0047	40072	Serial number – char 5,6				
\$0048	40073	Serial number – char 7,8				
\$0049	40074	Analog Input AI1 Value- low word	32 bits real	2	Returned	
\$004a	40075	Analog Input AI1 Value- high word			temperature value with RTD option	
\$004b	40076	Analog Input AI2 Value- low word	32 bits real	2	Returned	
\$004c	40077	Analog Input AI2 Value- high word			with RTD option	

b. Adressliste für einzelne Schreibregister (verwenden Sie 0x06 Leistungscode zum Schreiben)

PDU Address	Register	Data description	Read/ Write	Туре	No. registers*
\$1003	44100	Flowmeter address (1 - 247)	R/W	16 bits int.	1
\$1004	44101	Communication Baud Rate 1 = 4800, 2 = 9600, 3 = 19K2, 4 = 38K4 ,5 = 57K6	R/W	16 bits int.	1

Anmerkungen:

1. Die folgenden Durchflusseinheiten sind verfügbar

0. "m3" -Kubikmeter	1 "l" -Liter	2. "ga" -Gallonen
3. "ig" -Imperial Gallonen	4. "mg" -Millionen Gallonen	5. "cf" -Kubikfuß
6. "ba" -US Barrels	7. "ib" -Imperial Barrels	8. "ob" -Ölfässer

2. Folgende Energieeinheiten stehen zur Verfügung

0. "GJ" -Giga Joule	1. "kc" -kilocalorie	2. "MB" -Mbtu
3. "KJ" -Kilojoule	4. "bt" -btu	5. "Ts" -US-Tonnen
6. "Tn" -US Tons	7. "kw" -Kwh	

3. Wenn sich die Adresse des Durchflussmessers oder die Kommunikationsbaudrate ändert, arbeitet der Messer unter der neuen Adresse oder Kommunikationsbaudrate, nachdem die Kommunikationsbaudrate mit der zurückgegebenen primären Adresse und der Kommunikationsbaudrate geantwortet hat.

4. 16 Bit int – kurze ganze Zahl, 32 Bits int– lange ganze Zahl, 32 Bits real – Gleitkommazahl, Zeichenfolge – alphabetische Zeichenfolge.

16 RTD MODUL E- & PT1000-VERDAHTUNG (MODUL OPTIONAL)

16.1 RTD-Energiezähler-Funktion

Diese Funktion wird auf den folgenden Zähler- und Messtemperaturbereich angewendet: D118 Heißer (kalter) Energiezähler: 0 ~ 180 °C, ausgestattet mit PT1000 Temperatursensor.

Die Hauptfunktion des RTD-Moduls besteht darin, die Temperaturwerte für die Energiemessung einzugeben. Der D118 kann automatisch den Kaloriengehalt von Wasser bei verschiedenen Temperaturen berechnen und einen momentanen Energiewert und einen totalisierten Energiewert erhalten.

16.2 Verdrahtung (PT1000)

Drei-Draht-Verbindungsmethoden werden für das RTD-Modul und PT1000-Temperatursensoren verwendet. Folgende Verbindungsmethoden sind möglich (Hinweis: A1, A2 haben die gleiche Farbe, B1 und B2 sind die gleiche Farbe).

Three Wires Connection

Die beiden PT1000-Temperatursensoren sind an den Einlass- und Rücklaufrohren installiert und geben die Eingangstemperatur auf Signale an den Sender D118.

16.3 Energiemessverfahren

Energiemessmethoden: Formel: Q = m (h1 - h2) Q – Energiewert m – Qualität des Mediums(Laufzeit Wasservolumen)Dichte× H1 – Enthalpiewert des Einlasswassers H2 – Enthalpiewert des Rücklaufwassers

Die Temperatur und der Druck an den Ein- und Rücklaufwasserstellen können durch Temperatursensoren und einen Transmitter und Drucksensoren gemessen werden. Dann kann der Enthalpiewert an den Einlass- und Rücklaufwasserstellen über die Tabelle Enthalpiewerte berechnet werden. Der Durchfluss des Mediums kann über den Ultraschallstrom gemessen werden.

Sensoren, D118-Transmitter, und der Kalorienwert kann nach den obigen Formeln abgeleitet werden.

16.4 Methoden der Temperaturkalibrierung

Methode: Kalibrierungsmethode für die Widerstandsbox

Hinweis: Der Zweck besteht darin, die interne Schaltung des RTD-Moduls zu kalibrieren.

Benötigte Werkzeuge: eine DC-Widerstandsbox, 3 Drähte (jeder Draht weniger als 40mm Länge), und ein Instrumentenschraubendreher.

1. Schließen Sie das RTD-Modul A1 an ein Ende der DC-Widerstandsbox an und schließen Sie dann A2 an ein Ende der DC-Widerstandsbox an und B1 am anderen Ende der DC-Widerstandsbox, B2 am anderen Ende der DC-Widerstandsbox.

2. Schalten Sie den Sender ein und rufen Sie dann das Menü M07 auf.

3. Stellen Sie den Widerstandswert der DC-Widerstandsbox auf 1000,00 Ω ein.

4. Stellen Sie das 4mA-Potentiometer im linken Teil von A1 und das 4mA-Potentiometer rechts von A2 im Uhrzeigersinn oder gegen den Uhrzeigersinn ein und stellen Sie sicher, dass die Zulaufwassertemperatur und die Rücklaufwassertemperatur angezeigt ist: 0,00±0,1

5. Drücken Sie [MENU+↓+1+ENTER]-Tasten, Eingabecode "115800", dann drücken Sie die ENTER-Taste, um zu dehnen. Nur wenn die aktuelle Einschaltperiode automatisch abgeschaltet ist, oder wenn der Strom abgeschaltet wird.

6. Drücken Sie die ENTER, um die Eingabe vorzunehmen, und wählen Sie dann "Adjust 0", um die Wassertemperatureinstellung zurückzugeben, drücken Sie $[\downarrow\uparrow\uparrow]$ um die Temperatur für 0,00 einzustellen, Drücken Sie die ENTER, um die Eingabe vorzunehmen, und wählen Sie dann "Adjust 0", um die Wassertemperatur einzustellen, drücken Sie $[\downarrow\uparrow\uparrow]$, um die Temperatur für 0,00 einzustellen, Drücken Sie die EINGABETASTE, um den Kalibrierungsvorgang abzuschließen.

7. Stellen Sie den Widerstandswert von zwei DC-Widerstandsboxen ein. Es soll 1684,80 Ω betragen.

8. Geben Sie das Menü M07 ein, nachdem Sie auf zwei Temperaturstabilität gewartet haben, drücken Sie [MENU+↑+1+ENTER]-Tasten, um "Adjust 100" einzugeben und auszuwählen, um die Wassertemperatureinstellung zurückzugeben, drücken Sie [↓↑], um die Temperatur für 180 einzustellen. Drücken Sie die Eingabetaste, um die Einstellung der Einlasswassertemperatur um 180 ° C einzugeben, drücken Sie [↓↑], um die Temperatur für 180 einzustellen, drücken Sie die EINGABETASTE, um die Kalibrierung abzuschließen.

9. Einschalten für viele Male, 0 ° C: Ein- und Rücklaufwassertemperatur ist 0,00±0,05, Temperaturdifferenz ist 0,00±0,05 180 °C: Ein- und Rücklaufwassertemperatur beträgt 180 ±0.05, Temperaturdifferenz ist 0.00±0.05.

17.1 Energiemessverfahren

ACHTUNG

Hinweis: Für D118 gibt es 2 Methoden zum Ausführen der Energiezählerfunktion:

1. Wenn der Kunde das RTD-Modul nicht auswählt, sind die Al1 Al2 (4 ~ 20mA Eingangsports) offen, um vom Kunden gelieferte Temperaturtransmitter anzuschließen.

2. Wenn der Kunde das RTD-Modul auswählt, können die Al1-, Al2-Eingänge nicht verwendet werden.

17.2 Energiezählerfunktion

Das Durchflussmessgerät verfügt über eine Energiezählerfunktion. Das Messgerät kann automatisch den Kaloriengehalt von Wasser unter verschiedenen Temperaturen berechnen und den momentanen Kalorienwert und den totalisierten Kalorienwert erhalten. Ein separater, vom Kunden bereitgestellter Temperatursignaleingang wird über die Al1-, Al2-Klemmen an das Messgerät gesendet, die für ein Stromsignal von 4 ~ 20 mA oder 0 ~ 20 mA konfiguriert werden können.

17.3 Verdrahtung

Ai1, Al2 werden mit 2 Temperatursensoren über ein Verbindungskabel verbunden. Die 2 Temperatursensoren sind am Durchflussrohr und Rücklaufrohr installiert, sie können 4-20mA Signale an Al1, Al2 des Transmitters eingeben (siehe Verdrahtung Verbindung).

17.4 Energieberechnungsmethode

Das Durchflussmessgerät verfügt über 2 Berechnungsmethoden, um den Energiewert zu erreichen:

Formel 1: Energie (kalorische Menge) = Durchflusswertdifferenz in Temperatur × Spezifische Wärme

Hinweis: Wählen Sie Energieeinheiten im Fenster M84 Temperaturdifferenz: Differenz in 2 Analogeingängen Al1, Al2 (übertragen von 2 Temperatursensoren)Spezifische Wärme: Eingangsspezifischer Wärmewert im Fenster M86, wählen Sie im Allgemeinen Fixed Specific Heat Value 0.0041868GJ/M3 für Wasser

Formel 2: Energie (kalorische Menge) = Durchflusswert × Differenz in Energie Al1 und Energie Al2 Energie (Momentane Kalorie/Totalisierte Kalorie) kann automatisch berechnet und im Fenster M05 angezeigt werden. Wenn die Temperaturdifferenz ein fester Wert ist, kann der Zähler die Energie direkt ohne Temperatursensoren berechnen. Geben Sie im Fenster M85 den Wert für die feste Temperaturdifferenz ein. Zum Beispiel wissen wir, dass die feste Differenz 10 ° C beträgt, drücken Sie [MENU+8+5+ENTER+↓], um "1" auszuwählen. Fixed Difference", geben Sie die Taste [1+0] ein. Energie kann automatisch berechnet und im Fenster M05 angezeigt werden.

17.5 Temperaturbereich einstellen

Das Eingangstemperatursignal über Al1, Al2-Klemmen, stellt seinen Messbereich in Fenster M63 und Fenster M64 ein. Beispielsweise gibt der Eingangstemperatursensor ein Stromsignal von 4-20 mA an das Messgerät aus, das einen Temperaturbereich von 10 °C bis 50 °C darstellt. Schließen Sie diesen Sensor an das Al1-Terminal an und geben Sie 10, 150 in Fenster M63 ein. Der aktuelle mA-Wert und der Temperaturwert von Al1 werden im Fenster M06 angezeigt. Das gleiche Verfahren wird dann für den Auslasstemperatursensor befolgt; Der Nullpunkt und die Spanne für diesen Sensor werden in das Fenster M64 Zugehöriges Energiezählerfenster wie folgt eingegeben:

Fenster M05: Energie und summierte Energie anzeigen

Fenster M06: Anzeige des Al1-, Al2-Stromwerts und des entsprechenden Temperaturwerts

Fenster M63: Temperaturwert eingeben, den Al1 4mA und 20mA Analogeingang darstellen Fenster M64: Temperaturwert eingeben, den Al2 4mA und 20mA Analogeingang darstellen

Fenster M64: Temperaturwert eingeben, den A12 4m

Fenster M84: Energieeinheiten auswählen

Fenster M85: Temperaturquelle auswählen

Fenster M86: Spezifischer Heizwert

Fenster M88: Energiemultiplikator auswählen

Fenster M89: Energietotalisator zurücksetzen.

18.1 Schallgeschwindigkeit und Viskosität für häufig verwendete Flüssigkeiten

Flüssigkeit	Schall- gesch- windigkeit (m/s)	Viskosität
Wasser 20°C	1482	0,1
Wasser 50°C	1543	0,55
Wasser 75°C	1554	0,39
Wasser 100°C	1543	0,29
Wasser 125°C	1511	0,25
Wasser 150°C	1466	0,21
Wasser 175°C	1401	0,18
Wasser 200°C	1333	0,15
Wasser 225°C	1249	0,14
Wasser 250°C	1156	0,12
Aceton	1190	
Carbinol	1121	

Flüssigkeit	Schall- gesch- windigkeit (m/s)	Viskosität
Ethanol	1168	
Alkohol	1440	1,5
Glykol	1620	
Glycerin	1923	1180
Benzin	1250	0,80
Benzol	1330	
Toluol	1170	0,69
Kerosin	1420	2,3
Erdöl	1290	
Retinal	1280	
Luftfahrt- kerosin	1298	
Erdnussöl	1472	
Rizinusöl	1502	

18.2 Schallgeschwindigkeit für verschiedene häufig verwendete Materilien

Rohr- Material	Schall- gesch- windigkeit (m/s)
Stahl	3206
ABS	2286
Aluminium	3048
Messing	2270
Gußeisen	2460
Bronze	2270
Glasfaser- Expoxidha rz	3430
Glas	3276
Polyäthyle n	1950
PVC	2540

Liner- Material	Schall- gesch- windigkeit
Teflon	1225
Titan	3150
Zement	4190
Bitumen	2540
Porzellan- Email	2540
Glas	5970
Plastik	2280
Polyäthyle n	1600
PTFE	1450
Gummi	1600

17.2 Schallgeschwindigkeit im Wasser (1 tm) bei unterschiedliche Temperaturen

T(C)	V (m/s)	T (C)	V (m/s)	T (C)	V (m/s)
0	1402.3	34	1517.7	68	1554.3
1	1407.3	35	1519.7	69	1554.5
2	1412.2	36	1521.7	70	1554.7
3	1416.9	37	1523.5	71	1554.9
4	1421.6	38	1525.3	72	1555.0
5	1426.1	39	1527.1	73	1555.0
6	1430.5	40	1528.8	74	1555.1
7	1434.8	41	1530.4	75	1555.1
8	1439.1	42	1532.0	76	1555.0
9	1443.2	43	1533.5	77	1554.9
10	1447.2	44	1534.9	78	1554.8
11	1451.1	45	1536.3	79	1554.6
12	1454.9	46	1537.7	80	1554.4
13	1458.7	47	1538.9	<u>81</u>	1554.2
14	1462.3	48	1540.2	82	1553.9
15	1465.8	49	1541.3	83	1553.6
16	1469.3	50	1542.5	84	1553.2
17	1472.7	51	1543.5	85	1552.8
18	1476.0	52	1544.6	86	1552.4
19	1479.1	53	1545.5	87	1552.0
20	1482.3	54	1546.4	88	1551.5
21	1485.3	55	1547.3	89	1551.0
22	1488.2	56	1548.1	90	1550.4
23	1491.1	57	1548.9	91	1549.8
24	1493.9	58	1549.6	92	1549.2
25	1496.6	59	1550.3	93	1548.5
26	1499.2	60	1550.9	94	1547.5
27	1501.8	61	1551.5	95	1547.1
28	1504.3	62	1552.0	96	1546.3
29	1506.7	63	1552.5	97	1545.6
30	1509.0	64	1553.0	98	1544.7
31	1511.3	65	1553.4	99	1543.9
32	1513.5	66	1553.7		
33	1515.7	67	1554.0		

Fluss- Anwendungsdaten

19 KONTAKT

Wir helfen Ihnen gerne!

Bei Fragen sind wir Ihnen gerne behilflich. Kontaktieren Sie uns.

+43 3326 530 70

 \bigcirc

info@eom-solutions.at

Hauptstraße 27, A - 7533 Ollersdorf im Burgenland

Folgen Sie uns auch auf unseren Social Media Kanälen

EOM SOLUTIONS

WWW.EOM-SOLUTIONS.AT

UDM201 BEDIENUNGSANLEITUNG

EOM SOLUTIONS

WWW.EOM -SOLUTIONS.AT

EOM SOLUTIONS GMBH Energy Optimizing Monitoring

Hauptstraße 27, A - 7533 Ollersdorf im Burgenland Telefon/Fax: +43 3326 530 70 (20) | Mail info@eom-solutions.at

