

Instruction Sheet

Aqua TROLL 500/600 Rhodamine WT Sensor Overview

The In-Situ Rhodamine WT sensor measures rhodamine levels in natural water, surface water, groundwater, produced water and aquaculture applications.

Remove sensor port plug

if installed. Do not twist.

Getting Started

Rinse sensor with clean water before use.

Install sensor. Do not twist.

Remove restrictor from the instrument.

Place restrictor on instrument in calibration mode.

Calibrate and deploy.

Connect to the instrument with VuSitu or Win-Situ software.

	(
	🛆 Barometric Pres
	A Rhodamine WT
ettings	🔛 Calibration Repo

Select Calibrations from the menu.

🛃 Logging

☐ Calibrations Instrument Se Ø Disconnect

A Barometric Pressure
🛆 Rhodamine WT
Calibration Report

Choose the Rhodamine WT option and follow the instructions.

Lubricate o-ring at

bottom of sensor.

Flip the restrictor into deployment mode after calibration

Preparing Calibration Standards

To calibrate the Rhodamine sensor, prepare a Rhodamine WT solution according to the instructions below.

1. Start with a 2.5% Rhodamine WT solution. Pipette 1.0 mg/L of the solution into a 250 mL Class A volumetric flask.

2. Bring the flask to volume with deionized water. The resulting solution is 100 mg/L Rhodamine WT.

3. To obtain a 200 µg/L concentration, pipette 2.0 mL of the 100 mg/L solution into a 1000 mL flask.

4. Bring the flask to volume with deionized water.

Use an opaque container to store the 100 mg/L solution in a cool, dark place for up to six months.

Prepare the 200 μ g/L solution immediately before use and discard after calibration. If desired, use the procedure described above to make a different concentration of Rhodamine WT, such as 400 μ g/L. Alter the volume in Step 3 according to the table below to achieve the target concentration.

Use caution when deploying in direct sunlight or environments with highly-reflective surfaces. Ambient light can interfere with sensor readings.

Concentration Guide & Expected Calibration Values

Target Concentration	100 mg/L Rhodamine WT	Expected Calibration Value at 25° ⊂	Expected RFU Value at 25° ⊂
0 μg/L (deionized water)	none	0	0
100 μg/L	1.0 mL	100 μg/L	10
200 µg/L	2.0 mL	200 μg/L	20
400 μg/L	4.0 mL	400 μg/L	40

* These values are for reference only. Actual values may vary based on user-prepared standards.